Step-by-step explanation:
no sn as. kojsshsusishheidhsusjjsbsbshsbsjs7ehsjsnkosvsjsishshshsjdjjddyfygyvrcudjdhdudhsjsudhdjs
A line of symmetry basically is like a reflection of a shape, so your answer is D.
bearing in mind that perpendicular lines have negative reciprocal slopes, so
![\bf \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}~\hspace{10em}\stackrel{slope}{y=\stackrel{\downarrow }{-\cfrac{1}{3}}x-1} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D~%5Chspace%7B10em%7D%5Cstackrel%7Bslope%7D%7By%3D%5Cstackrel%7B%5Cdownarrow%20%7D%7B-%5Ccfrac%7B1%7D%7B3%7D%7Dx-1%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{-\cfrac{1}{3}}\qquad \qquad \qquad \stackrel{reciprocal}{-\cfrac{3}{1}}\qquad \stackrel{negative~reciprocal}{+\cfrac{3}{1}\implies 3}}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bperpendicular%20lines%20have%20%5Cunderline%7Bnegative%20reciprocal%7D%20slopes%7D%7D%20%7B%5Cstackrel%7Bslope%7D%7B-%5Ccfrac%7B1%7D%7B3%7D%7D%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cstackrel%7Breciprocal%7D%7B-%5Ccfrac%7B3%7D%7B1%7D%7D%5Cqquad%20%5Cstackrel%7Bnegative~reciprocal%7D%7B%2B%5Ccfrac%7B3%7D%7B1%7D%5Cimplies%203%7D%7D)
so we're really looking for a line whose slope is 3 and runs through (1,5)
![\bf (\stackrel{x_1}{1}~,~\stackrel{y_1}{5})~\hspace{10em} slope = m\implies 3 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-5=3(x-1) \\\\\\ y-5=3x-3\implies y=3x+2](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B5%7D%29~%5Chspace%7B10em%7D%20slope%20%3D%20m%5Cimplies%203%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-5%3D3%28x-1%29%20%5C%5C%5C%5C%5C%5C%20y-5%3D3x-3%5Cimplies%20y%3D3x%2B2)