Answer:
<u><em>Galapagos finches</em></u><u> have various beak sizes that make foraging for food more successful.</u>
Explanation:
Organisms evolve over time due to changes in their genome. These are pontaneous, and occur in DNA at random. These changes are called mutations and form alleles or different forms of a gene.
Over time within a population, the number alleles increase the variation of the population. These variants may confer specific traits within an individual, that may confer a biological advantage.
Thus, the trait may make the organisms more capable of obtaining food, shelter a mate etc. or ensure survival, i.e. they are able to pass on their genes to the next generation.
Answer:
B. At what rate do the mitochondria of the cell need to convert glucose to usable energy molecules to meet the high energy needs of the cell?
Explanation:
Organelles are specific in their functioning and hence, each organelle contributes its own quota to the cell's proper functioning. According to the question, a muscle tissue is being worked on to determine the effect of a missing or damaged organelle on its cell.
Mitochondria are organelles found in all eukaryotic living cells. They are the organelles responsible for the synthesis of ATP (energy) used by the cell as a result of the glucose that gets converted in them during cellular respiration.
Therefore, to determine if the muscle cells are functioning properly, the question that: At what rate do the mitochondria of the cell need to convert glucose to usable energy molecules to meet the high energy needs of the cell? should be asked.
Note that, Chloroplast and cell wall are not found in muscle cells, which is an animal cell. Likewise, ribosomes are not organelles for synthesis of glucose.
Answer:
Pressure, P = 28.2 kPa
Explanation:
Given that,
Number of moles, n = 0.54 mol
Volume of ideal gas, V = 35.5 L
Temperature, T = 223 K
We need to find the pressure of ideal gas. The equation of ideal gas is given by :

R is gas constant
P is pressure

So, the pressure of the gas is 28.2 kPa.
To copy the DNA, recombinant DNA method use bacteria such as E. Coli whose plasmids has been combined with various gene to produce the substance that is wanted.