<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>:</em><em>)</em>
Answer:
0.45 seconds
Explanation:
Letting the value of g = 10 m/s/s
final velocity (v) = 0 m/s (since the egg will come to rest at the maximum height)
initial velocity(u) = 4.5 m/s
acceleration = -10 m/s/s (since the gravity is acting against the egg)
time = t seconds
From the first equation of motion:
<em>v = u + at</em>
<em>0 = 4.5 + (-10)t</em>
<em>t = -4.5 / -10</em>
t = 0.45 seconds
Answer:
D
Explanation:
<em>The most suitable testable question. in this case, would be that 'are there more home runs during the more humid months of the summer?'</em>
Since the aim of the investigation is to find the relationship between humidity and the number of home runs, measuring the number of home runs during the more humid months in the summer and comparing the data to the number of home runs during the less humid months in the same summer would provide the answer.
<u>Only option D raises a valid question that is relevant to the aim of the investigation.</u>
Answer:
v = 17.71 m / s
Explanation:
We can work this exercise with the kinematics equations. In general the body is released so that its initial velocity is zero, the acceleration of the acceleration of gravity
v² = v₀² - 2 g (y -y₀)
v² = 0 - 2g (y -y₀)
when it hits the stone the height is zero and part of the height of the seagull I
v² = 2g y₀
v = Ra (2g i)
let's calculate
v =√ (2 9.8 16)
v = 17.71 m / s