Answer:
The car will travel a distance of 17.45 meters.
Explanation:
Given:
Initial velocity
= 0
Final velocity
= 7.6 m/s
Time taken = 4.6 s
Acceleration = (Final velocity - Initial Velocity )/time

We have to calculate total distance traveled by the car.
Let the distance traveled be 'd'
Equation of motion:

Plugging the values.
⇒
⇒
⇒
The car will travel a distance of 17.45 meters for the above case.
Answer:
The average linear velocity (inches/second) of the golf club is 136.01 inches/second
Explanation:
Given;
length of the club, L = 29 inches
rotation angle, θ = 215⁰
time of motion, t = 0.8 s
The angular speed of the club is calculated as follows;

The average linear velocity (inches/second) of the golf club is calculated as;
v = ωr
v = 4.69 rad/s x 29 inches
v = 136.01 inches/second
Therefore, the average linear velocity (inches/second) of the golf club is 136.01 inches/second
66 g of element Y is needed since the ratio between element X and element Y is 1:2

The given statements are :
Q1) Distance formula is displacement/time T/F?
- False
Q2)velocity formula is = displacement/time T/F?
- True
Check bing for the answer