In the given question, one important information for getting to the actual solution is not given and that is the atmospheric pressure. To find the approximate absolute pressure, it is needed to add the value of atmospheric pressure with the gage pressure.
Atmospheric pressure = 100 kPa
Then
Absolute pressure = 156 + 100 kPa
= 256 KPa.
Answer:
955.36 seconds ≈ 16 minutes
Explanation:
Power(P) is the rate of doing work(W)
That is, P = W/t, where t is the time.
multipying both sides with 't' and dividing with 'P', we get: t=W/P
Here, W = 5.35 x 10^10 J and P = 5.6 x 10^7 W ( 1 W = 1 J/s).
Therefore , on dividing W with P, we get 955.36 seconds.
The value of R3 is A) 10 Ω
It has to be the last one because whenever lights are turned on it decreases because all lights are on at the same time. It's good to just have one light on. It doesn't use as much electricity.