Answer : The momentum of ball is, 15 kg.m/s
Explanation :
Momentum : It is defined as the motion of a moving body. Or it is defined as the product of mass of velocity of an object.
Formula of momentum is:
where,
p = momentum = ?
m = mass = 1.5 kg
v = velocity = 10 m/s
Now put all the given values in the above formula, we get:
Therefore, the momentum of ball is 15 kg.m/s
The wavelength of the light decreases as it enters into the medium with the greater index of refraction. The wavelength of the light remains constant as it transitions between materials.
Energy is transfered when its moved from one object to another. The rate of energy transfered is called power. Work is the transfer of energy from one object to another.
Gravity on the surface = 4 m/s^2
Now, the acceleration due to centripetal motion, a = v^2/R
Where,
v= 10^3 m/s, R = 10^6 m
Then,
a = (10^3)^2/(10^6) = 1 m^2/s
The net gravitational acceleration = 4-1 = 3 m/s^2
The reading on the spring scale = ma = 40*3 = 120 N
Answer:
q=6.22*10^-10C
Explanation:
Two large metal plates of area 0.88 m2 face each other, 4.8 cm apart, with equal charge magnitudes but opposite signs. The field magnitude E between them (neglect fringing) is 80 N/C. Find |q|
E=α/∈, electric field within the plate
α=q/A
A=area of the plate
∈=is the permittivity
substituting , we have
The field magnitude E between them (neglect fringing)
E=q/A∈
q=EA∈
q=0.88*80*8.84*10^-12
q=6.22*10^-10C