Answer:
[HI] = 0.7126 M
Explanation:
Step 1: Data given
Kc = 54.3
Temperature = 703 K
Initial concentration of H2 and I2 = 0.453 M
Step 2: the balanced equation
H2 + I2 ⇆ 2HI
Step 3: The initial concentration
[H2] = 0.453 M
[I2] = 0.453 M
[HI] = 0 M
Step 4: The concentration at equilibrium
[H2] = 0.453 - X
[I2] = 0.453 - X
[HI] = 2X
Step 5: Calculate Kc
Kc = [Hi]² / [H2][I2]
54.3 = 4x² / (0.453 - X(0.453-X)
X = 0.3563
[H2] = 0.453 - 0.3563 = 0.0967 M
[I2] = 0.453 - 0.3563 = 0.0967 M
[HI] = 2X = 2*0.3563 = 0.7126 M
P = mv, where p is momentum, m is mass in kg and v is velocity in m/s
<h3>
Answer:</h3>
0.3093 g of glucose are consumed each minute by the body.
<h3>
Explanation:</h3>
- During cellular respiration glucose is broken down in presence of oxygen to yield energy, water and carbon dioxide.
- The equation for the reaction taking place during cellular respiration is;
C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂
We are required to calculate the amount of glucose in grams;
<h3>Step 1: Calculate the moles of glucose broken down</h3>
From the equation, the mole ratio of glucose to Oxygen is 1 : 6
Moles of Oxygen in a minute is 1.03 × 10^-2 moles
Therefore, moles of glucose will be;
= (1.03 × 10^-2)÷6
= 1.717 × 10^-3 moles
<h3>Step 2: Mass of glucose </h3>
Mass is given by multiplying the number of moles with molar mass
mass = moles × molar mass
Molar mass glucose is 180.156 g/mol
Therefore;
Mass = 1.717 × 10^-3 × 180.156 g/mol
= 0.3093 g
Hence, 0.3093 g of glucose are consumed each minute by the body.
Answer:
2 atoms
Explanation:
There are 2 atoms in element NaCl. This is because there is 1 atom of Na (sodium) and 1 atom of Cl (chlorine) in each NaCl molecule. Elements by themselves do not have a "number of atoms"- if you're talking about the atomic number, it's the number of protons (or electrons in a neutral atom) of an element.
Answer:
The specific heat capacity of silver is 0.24 j/g.°C.
Explanation:
Given data:
Mass of sample = 55.00 g
increase of temperature ΔT= 15.0 °C
Heat absorbed = 193.9 J
Specific heat capacity of silver = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance.
ΔT = change in temperature
Now we will put the values in formula.
193.9 J = 55.00 g × c ×15.0 °C
193.9 J = 825 g.°C × c
c = 193.9 J / 825 g.°C
c= 0.24 /g.°C
The specific heat capacity of silver is 0.24 j/g.°C.