Answer:
Answer E.
For a collision to be completely elastic, there must be NO LOSS in kinetic energy.
We can go through each answer choice:
A. Since the ball rebounds at half the initial speed, there is a loss in kinetic energy. This is NOT an elastic collision.
B. A collision involving sticking is an example of a perfectly INELASTIC collision. This is NOT an elastic collision.
C. A reduced speed indicates that there is a loss of kinetic energy. This is NOT elastic.
D. The balls traveling at half the speed after the collision indicates a loss of kinetic energy, making this collision NOT elastic.
E. This collision indicates an exchange of velocities, characteristic of an elastic collision. We can prove this:
Let:
m = mass of each ball
v = velocity
We have the initial kinetic energy as:
KE = \frac{1}{2}mv^2 + 0 = \frac{1}{2}mv^2KE=21mv2+0=21mv2
And the final as:
KE = 0 + \frac{1}{2}mv^2 = \frac{1}{2}mv^2KE=0+21mv2=21mv2
Answer:
Explanation:
i think the anwer would be that its elliptical orbit and the tilt an its axis.
Density = mass/volume = 800/200 =4 g/cm^3
<h3>
Answer:</h3>
82.11%
<h3>
Explanation:</h3>
We are given;
- Theoretical mass of the product is 137.5 g
- Actual mass of the product is 112.9 g
We are supposed to calculate the percentage yield
- We need to know how percentage yield is calculated;
- To calculate the percentage yield we get the ratio of the actual mass to theoretical mass and express it as a percentage.
Thus;
% yield = (Actual mass ÷ Experimental mass) × 100%
= (112.9 g ÷ 137.5 g) × 100%
= 82.11%
Therefore, the percentage yield of the product is 82.11 %
B. Theory
The hypothesis that stand the test of time (often tested and never rejected) is called theory. A theory is supported by a great dealcof evidence.