If you're using the app, try seeing this answer through your browser: brainly.com/question/2887301—————
Solve the initial value problem:
dy——— = 2xy², y = 2, when x = – 1. dxSeparate the variables in the equation above:

Integrate both sides:


Take the reciprocal of both sides, and then you have

In order to find the value of
C₁ , just plug in the equation above those known values for
x and
y, then solve it for
C₁:
y = 2, when
x = – 1. So,


Substitute that for
C₁ into (i), and you have

So
y(– 2) is

I hope this helps. =)
Tags: <em>ordinary differential equation ode integration separable variables initial value problem differential integral calculus</em>
If your looking for X, it would be X = 7
95% of red lights last between 2.5 and 3.5 minutes.
<u>Step-by-step explanation:</u>
In this case,
- The mean M is 3 and
- The standard deviation SD is given as 0.25
Assume the bell shaped graph of normal distribution,
The center of the graph is mean which is 3 minutes.
We move one space to the right side of mean ⇒ M + SD
⇒ 3+0.25 = 3.25 minutes.
Again we move one more space to the right of mean ⇒ M + 2SD
⇒ 3 + (0.25×2) = 3.5 minutes.
Similarly,
Move one space to the left side of mean ⇒ M - SD
⇒ 3-0.25 = 2.75 minutes.
Again we move one more space to the left of mean ⇒ M - 2SD
⇒ 3 - (0.25×2) =2.5 minutes.
The questions asks to approximately what percent of red lights last between 2.5 and 3.5 minutes.
Notice 2.5 and 3.5 fall within 2 standard deviations, and that 95% of the data is within 2 standard deviations. (Refer to bell-shaped graph)
Therefore, the percent of red lights that last between 2.5 and 3.5 minutes is 95%
Answer:
16
Step-by-step explanation:
10+6=16
As given he made 3/5 of basket he shot.
So we can find number of basket made by Everett equal to 3/5 of total number of shot .
So if total number of shot is 60.
Then the number of basket made by Everett =

of 60.

So the number of basket made by Everett in 60 shots = 36.