Answer:
true a good refrigiant needs a high boiling point
Answer:
Pebble A has 1/3 the acceleration as pebble B.
Explanation:
F = m×a
mass of a = 3 × mass of b (m_a = 3 × m_b)
Same starting force, F
m_a = mass of a
m_b = mass of b
a_a = acceleration of a
a_b = acceleration of b
F = m_a × a_a = m_b × a_b
3 × m_b × a_a = m_b × a_b
3 × a_a = a_b
OR
a_a = a_b / 3
A baseball will curve better on the flat plain if it is higher than sea level but low elevation.
Hope this helped!
Answer:
If you throw a pebble into a pond, ripples
spread out from where it went in. These
ripples are waves travelling through the
water. The waves move with a transverse
motion.
Explanation:
Answer:
The value of the spring constant of this spring is 1000 N/m
Explanation:
Given;
equilibrium length of the spring, L = 10.0 cm
new length of the spring, L₀ = 14 cm
applied force on the spring, F = 40 N
extension of the spring due to applied force, e = L₀ - L = 14 cm - 10 cm = 4 cm
From Hook's law
Force applied to a spring is directly proportional to the extension produced, provided the elastic limit is not exceeded.
F ∝ e
F = ke
where;
k is the spring constant
k = F / e
k = 40 / 0.04
k = 1000 N/m
Therefore, the value of the spring constant of this spring is 1000 N/m