<span> a bicycle locked to a bike rack im pretty sure</span>
Answer:
Potential energy = 73.575 kJ
Kinetic energy = 135kJ
Total mechanical energy = 208.575 kJ
Explanation:
The potential energy of a body is given by the expression, PE = mgh, where m is the mass of the body, g is the acceleration due to gravity value and h is the height of the body.
The kinetic energy of a body is given by
, where v is the velocity and m is the mass of body.
Total mechanical energy = Kinetic energy + Potential energy

PE = mgh = 75*9.81*100 = 73575 J = 73.575 kJ
Total mechanical energy = Kinetic energy + Potential energy = 135+73.575
= 208.575 kJ
Answer with explanation:
The Normalization Principle states that

Given
Thus solving the integral we get

The integral shall be solved using chain rule initially and finally we shall apply the limits as shown below

Applying the limits and solving for A we get
![I=\frac{1}{k}[\frac{1}{e^{kx}}-\frac{x}{e^{kx}}]_{0}^{+\infty }\\\\I=-\frac{1}{k}\\\\\therefore A=-k](https://tex.z-dn.net/?f=I%3D%5Cfrac%7B1%7D%7Bk%7D%5B%5Cfrac%7B1%7D%7Be%5E%7Bkx%7D%7D-%5Cfrac%7Bx%7D%7Be%5E%7Bkx%7D%7D%5D_%7B0%7D%5E%7B%2B%5Cinfty%20%7D%5C%5C%5C%5CI%3D-%5Cfrac%7B1%7D%7Bk%7D%5C%5C%5C%5C%5Ctherefore%20A%3D-k)
Answer:
The efficiency of a Stirling engine is 74%
Explanation:
Given:
Temperature of gas when it is cold
K
Temperature of gas when it is hot
K
The efficiency of a stirling engine,




∴ 
Therefore, the efficiency of a Stirling engine is 74%