Answer:
a) t=1s
y = 10.1m
v=5.2m/s
b) t=1.5s
y =11.475 m
v=0.3m/s
c) t=2s
y =10.4 m
v=-4.6m/s (The minus sign (-) indicates that the ball is already going down)
Explanation:
Conceptual analysis
We apply the free fall formula for position (y) and speed (v) at any time (t).
As gravity opposes movement the sign in the equations is negative.:
y = vi*t - ½ g*t2 Equation 1
v=vit-g*t Equation 2
y: The vertical distance the ball moves at time t
vi: Initial speed
g= acceleration due to gravity
v= Speed the ball moves at time t
Known information
We know the following data:
Vi=15 m / s

t=1s ,1.5s,2s
Development of problem
We replace t in the equations (1) and (2)
a) t=1s
=15-4.9=10.1m
v=15-9.8*1 =15-9.8 =5.2m/s
b) t=1.5s
=22.5-11.025=11.475 m
v=15-9.8*1.5 =15-14.7=0.3m/s
c) t=2s
= 30-19.6=10.4 m
v=15-9.8*2 =15-19.6=-4.6m/s (The minus sign (-) indicates that the ball is already going down)
All of Dina's potential energy Ep is converted into kinetic energy Ek so Ep=Ek, where Ep=m*g*h and Ek=(1/2)*m*v². m is the mass of Dina, h is the height of ski slope, g=9.8 m/s² and v is the maximal velocity.
So we solve for v:
m*g*h=(1/2)*m*v², masses cancel out,
g*h=(1/2)*v², we multiply by 2,
2*g*h=v² and take the square root to get v
√(2*g*h)=v, we plug in the numbers and get:
v=9.9 m/s.
So Dina's maximum velocity on the bottom of the ski slope is v=9.9 m/s.
Answer:
(a) 8Ω (b) Ratio = Parra/P8 ohm = 1
Explanation:
Solution
Recall that,
An high-fidelity amplifier has one output for a speaker of resistance of = 8 Ω
Now,
(a) How can two 8-Ω speakers be arranged, when one = 4-Ω speaker, and one =12-Ω speaker
The Upper arm is : 8 ohm, 8 ohm
The Lower arm is : 12 ohm, 4 ohm
The Requirement is = (16 x 16)/(16 + 16) = 8 ohm
(b) compare your arrangement power output of with the power output of a single 8-Ω speaker
The Ratio = Parra/P8 ohm = 1
The general formula to calculate the work is:

where F is the force, d is the displacement of the couch, and
is the angle between the direction of the force and the displacement. Let's apply this formula to the different parts of the problem.
(a) Work done by you: in this case, the force applied is parallel to the displacement of the couch, so
and
, therefore the work is just equal to the product between the horizontal force you apply to push the couch and the distance the couch has been moved:

(b) work done by the frictional force: the frictional force has opposite direction to the displacement, therefore
and
. Therefore, we must include a negative sign when we calculate the work done by the frictional force:

(c) The work done by gravity is zero. In fact, gravity (which points downwards) is perpendicular to the displacement of the couch (which is horizontal), therefore
and
: this means
.
(d) Work done by the net force:
The net force is the difference between the horizontal force applied by you and the frictional force:

And the net force is in the same direction of the displacement, so
and
and the work done is

In this item, we let x be the rate of the boat in still water and y be the rate of the current.
Upstream. When the boat is going upstream, the speed in still water is deducted by the speed of the current because the boat goes against the water. The distance covered is calculated by multiplying the number of hours and the speed.
(x - y)(3) = 144
Downstream. The speed of the boat going downstream is equal to x + y because the boat goes with the current.
(x + y)(2) = 144
The system of linear equations we can use to solve for x is,
3x - 3y = 144
2x + 2y = 144
We use either elimination or substitution.
We solve for the y of the first equation in terms of x,
y = -(144 - 3x)/3
Substitute this to the second equation,
2x + 2(-1)(144 - 3x)/3 = 144
The value of x from the equation is 60
<em>ANSWER: 60 km/h</em>