Second orbital can hold 8 electrons
I think it's easiest to find the pOH from the given [OH-] first.
-log(1x10^-5)
pOH=5
Then find the pH.
pOH+pH=14
5+pH=14
pH=9
Then find the [H+] using the pH.
antilog(-9) (if you dont have an antilog button use 10^-9)
[H+]=1x10^-9
Bronsted - Lowry acid in the given reaction is NH₄, as it gives H⁺ ion.
<h3>What is Bronsted - Lowry acid?</h3>
According to the theory of Bronsted - Lowry, acids are those substances which gives H⁺ ion or proton in the aqueous medium.
Given chemical reaction is :
NH₄ + HPO₄²⁻ → NH₃ + H₂PO₄⁻
In the above reaction NH₄ is the Bronsted - Lowry acid as it gives H⁺ ion in the reaction and changes to NH₃ which is the conjugate base of NH₄. Whereas HPO₄²⁻ is the Bronsted - Lowry base as it accepts the H⁺ ion to form H₂PO₄⁻ which is the conjugate acid of it.
Hence, option (1) is correct, i.e. NH₄ is the Bronsted - Lowry acid.
To know more about Bronsted - Lowry acid, visit the below link:
brainly.com/question/1435076
The wt% of KOH = 45%
This implies that there is 45 g of KOH in 100 g of the solution
Density of the solution is given as 1.45 g/ml
Therefore, the volume corresponding to 100 g of the solution is
= 100 g * 1 ml /1.45 g = 68.97 ml = 0.069 L
Now concentration of the concentrated KOH solution is:
Molarity = moles of KOH/vol of solution
= (45 g/56.105 g.mol-1)/0.069 L = 11.6 M
Thus,
Initial KOH concentration M1 = 11.6 M
Initial volume = V1
Final concentration M2 = 1.20 M
Final volume V2 = 250 ml
M1*V1= M2*V2
V1 = M2*V2/M1 = 1.20*250/11.6 = 25.9 ml = 26 ml
Answer:
299.83°K
Explanation:
So, kelvin is a means of measuring temperature, as the question implies. To convert Celsius, one form of measuring temperature, to Kelvin, another form of measuring temperature, we must know the conversion median. Our median is that 0°C = 273.15°K. So, now, as we know that 0°C = 273.15°K, 26.68°C = 273.15°K + 26.68°. Because 273.15K might as well be zero degrees celsius (according to our median 0°C = 273.15°K), we simply add 26.68° to 273.15K and get 299.83°K