Friction <span>is most responsible for slowing a bicycle down when the brakes are applied</span>
Answer:
It kinda is
Explanation:
The school system isn't very affective on the young adolcent minds, the crime rate is very high (indicating poverty rates) some drug smmuglers are based in Haiti, and half the city is destroyed from either people or the environment.
<h3>
Answer:</h3>
0.127 mol Au
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 25.0 g Au
[Solve] moles Au
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of Au - 196.97 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.126923 mol Au ≈ 0.127 mol Au
Answer:
25.8
Explanation:
Let's write the reaction between magnesium-phosphide and potassium:
Mg3P2 + K = Mg + K3P
And now let's balance this equation:
Mg3P2+6K=3Mg+2K3P
We see that the ratio of magnesium-phosphide and potassium is 1:6, which means that for every mole of magnesium-phosphide there need to be 6 moles of potassium.
Since we have 4.3 moles of Mg3P2, there need to be 6 • 4.3 = 25.8 moles of potassium.
The question does not provide the equation
Answer:-
72.89 grams
Explanation:-
The balanced chemical equation for this reaction is
CuSO4 + Fe --> FeSO4 + Cu
Molecular weight of CuSO4 = 63.55 x 1 + 32 x 1 + 16 x 4
= 159.55 gram
Atomic weight of Cu = 63.55 gram.
According to the balanced chemical equation
1 CuSO4 gives 1 Cu
∴159.55 gram of CuSO4 would give 63.55 gram of Cu.
183 gram of CuSO4 would give 63.55 x 183 / 159.55
= 72.89 grams of Cu