1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
monitta
3 years ago
14

Can you guys please help me!!!!

Mathematics
1 answer:
iren2701 [21]3 years ago
3 0

Answer:

The graph of y = x^3 has been translated 3 units to the right and 4 units upward

Thanks and have a great day!

You might be interested in
Can some please help with this I will give brainliest.​
3241004551 [841]

Answer:

x^{-28}*7^{-56}

Step-by-step explanation:

Firstly, you need to know that raising a fraction to a power raises both the top and the bottom to that power.

Second, a negative power on the top and bottom flips the fraction

Last, raising a power to a power multiplies the powers

So, \frac{7^{-8^{7}}}{x^{4^7}}=\frac{7^{-56}}{x^{28}}=\frac{1}{x^{28}*7^{56}}=x^{-28}*7^{-56}

5 0
2 years ago
"Which statement about angles is true? A. An angle is formed by two rays that do not have the same endpoint. B. An angle that tu
Amanda [17]

Answer:

a

Step-by-step explanation:

3 0
3 years ago
Solve the initial value problems:<br> 1/θ(dy/dθ) = ysinθ/(y^2 + 1); subject to y(pi) = 1
ladessa [460]

Answer:

-\theta cos\thsta+sin\theta = \frac{y^{2} }{2} + ln y + \pi  - \frac{1}{2}

Step-by-step explanation:

Given the initial value problem \frac{1}{\theta}(\frac{dy}{d\theta} ) =\frac{ ysin\theta}{y^{2}+1 } \\ subject to y(π) = 1. To solve this we will use the variable separable method.

Step 1: Separate the variables;

\frac{1}{\theta}(\frac{dy}{d\theta} ) =\frac{ ysin\theta}{y^{2}+1 } \\\frac{1}{\theta}(\frac{dy}{sin\theta d\theta} ) =\frac{ y}{y^{2}+1 } \\\frac{1}{\theta}(\frac{1}{sin\theta d\theta} ) = \frac{ y}{dy(y^{2}+1 )} \\\\\theta sin\theta d\theta = \frac{ (y^{2}+1)dy}{y} \\integrating\ both \ sides\\\int\limits \theta sin\theta d\theta =\int\limits  \frac{ (y^{2}+1)dy}{y} \\-\theta cos\theta - \int\limits (-cos\theta)d\theta = \int\limits ydy + \int\limits \frac{dy}{y}

-\theta cos\thsta+sin\theta = \frac{y^{2} }{2} + ln y +C\\Given \ the\ condition\ y(\pi ) = 1\\-\pi cos\pi +sin\pi  = \frac{1^{2} }{2} + ln 1 +C\\\\\pi + 0 = \frac{1}{2}+ C \\C = \pi  - \frac{1}{2}

The solution to the initial value problem will be;

-\theta cos\thsta+sin\theta = \frac{y^{2} }{2} + ln y + \pi  - \frac{1}{2}

5 0
3 years ago
How do you write 7.2% into decimal form?
LenaWriter [7]
You need to divide number by 100
7.2/100=0.072
5 0
3 years ago
Read 2 more answers
Simplify. Assume no variable is 0.
quester [9]

Step-by-step explanation:

Q16

( {5x}^{3}  {y}^{ - 5} )( {4xy}^{3} )

First, we multiply the variable x together:

{x}^{3}  \times x =  {x}^{4}

and remove brackets:

{5y}^{ - 5}  \times  {4x}^{4}  \times  {y}^{3}

Now, we multiply the variable y:

{y}^{ - 5}  \times  {y}^{3}  =  {y}^{ - 2}

Hence:

5 \times 4 {x}^{4}  \times  {y}^{ - 2}

Use the rule

{x}^{ - y}  =  \frac{1}{ {x}^{y} }

Thus,

5 \times 4 {x}^{4}  \times  \frac{1}{ {y}^{2} }

Multiply:

\frac{20 {x}^{4} }{ {y}^{2} }

Q17

( - 2 {b}^{3} c)(4 {b}^{2}  {c}^{2} )

- 2 {b}^{3} c\times  4 {b}^{2}  {c}^{2}

Multiply the variable b together:

- 2c \times 4 {b}^{5}  {c}^{2}

Multiply the variable c together:

- 2 \times 4 {b}^{5}  {c}^{3}

Multiply.

- 8 {b}^{5}  {c}^{3}

Q18:

\frac{ {a}^{3}  {n}^{7} }{a {n}^{4} }

Divide the numerator and denominator by a:

\frac{ {a}^{2} {n}^{7}  }{ {n}^{4} }

Apply the rule that

\frac{ {x}^{y} }{ {x}^{z} }  =  {x}^{y - z}

Hence, the equation will be

{a}^{2}  {n}^{7 - 4}

which is finally

{a}^{2}  {n}^{3}

Q19:

\frac{ -  {y}^{3}  {z}^{5} }{ {y}^{2} {z}^{3}  }

Do the same rule said above:

-  \frac{ {z}^{5} {y}^{3 - 2}  }{ {z}^{3} }

- \frac{y {z}^{5} }{ {z}^{3} }

Do the rule again:

- y {z}^{5 - 3}

- y {z}^{2}

Q20:

\frac{ - 7 {x}^{5}  {y}^{5}  {z}^{4} }{21 {x}^{7} {y}^{5}   {z}^{2} }

Cancel the common factor of 7:

-  \frac{ {x}^{5} {y}^{5} {z}^{4}   }{3 {x}^{7}  {y}^{5}  {z}^{2} }

-  \frac{ {y}^{5}  {z}^{4} }{3 {y}^{5} {z}^{2}   {x}^{7 - 5} }

Thus,

-  \frac{ {y}^{5}  {z}^{4} }{3 {y}^{5} {z}^{2}   {x}^{2} }

Cancel common factor of y^5

-  \frac{ {z}^{4} }{3 {z}^{2}   {x}^{2} }

-  \frac{ {z}^{4 - 2} }{3 {x}^{2} }

-  \frac{ {z}^{2} }{3 {x}^{2} }

Q21:

\frac{9 {a}^{7}  {b}^{5} {c}^{5}  }{18 {a}^{5}  {b}^{9} {c}^{3}  }

Cancel the common factor which is 9:

\frac{{a}^{7}  {b}^{5} {c}^{5}  }{2 {a}^{5}  {b}^{9} {c}^{3}  }

"Move" the variable a up using the rule:

\frac{{a}^{7 - 5}  {b}^{5} {c}^{5}  }{2  {b}^{9} {c}^{3}  }

\frac{{a}^{2}  {b}^{5} {c}^{5}  }{2  {b}^{9} {c}^{3}  }

"Move" the variable b down using the rule:

\frac{{a}^{2} {c}^{5}  }{2   {c}^{3} {b}^{9 - 5}  }

\frac{{a}^{2} {c}^{5}  }{2   {c}^{3} {b}^{4}  }

"Move" the variable c up using the rule

\frac{{a}^{2} {c}^{5 - 3}  }{2  {b}^{4}  }

\frac{{a}^{2} {c}^{2}  }{2  {b}^{4}  }

Q22:

( {n}^{5} {)}^{4}

Use the rule:

({x}^{y}  {)}^{z}  = {x}^{yz}

Hence,

{n}^{5 \times 4}

{n}^{20}

Q23:

( {z}^{3}  {)}^{6}

Using the same rule above,

{z}^{3 \times 6}

Therefore,

{z}^{18}

5 0
3 years ago
Read 2 more answers
Other questions:
  • X2 + 2 = x + 8, {1, 3, 4, 5}
    8·1 answer
  • Solve using Distributive property -3(-4v^3-2+2y^2)
    10·1 answer
  • A beach ball a radius 15 centimeters what is the volume of the beach ball?
    15·2 answers
  • Re-write the quadratic function below in standard form<br> y= -(x-3)(x+7)<br> Y=?
    15·1 answer
  • On the blueprint of a house 27 millimeters represents 6 meters. The actual length of the living room is 9 meters. What is its le
    15·1 answer
  • Haala buys 13 identical shirts and 22 identical ties for 363.01.. The cost of a shirt is 15.35. Find the cost of a tie
    8·1 answer
  • What is the area of ABC
    5·1 answer
  • Helppppppp pleaseeee!!!!!!!!!!!!!!!
    10·1 answer
  • Someone please help me​
    6·1 answer
  • Problem of the Week
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!