In the front is where the bass of everything comes from so it’s generally louder up there and toward the back there’s not as much bass to the music more just hearing the singer and other people screaming
Answer:
a. Magnetic field is a location of a vector field around an electric current or magnet formed due to moving electric charges, or magnetic material and has a magnetic effect and exerts a force on other magnetic materials, electric current, and electric charges. The Earth's magnetic field that has the effect of turning a compass needle is an example of a magnetic field
b. The number of turns of the coil, N, in Diagram 1.1 > The number of turns of the coil, N, in Diagram 1.2
The pattern of the iron filings in Diagram 1.1 are closer with less space in between than the pattern of iron filings in Diagram 1.2
The angle of deflection of the ammeter pointer in Diagram 1.1 will be > The angle of deflection of the ammeter pointer in Diagram 1.2, given that the number of turns and current are inversely proportional
c. i. The pattern of the iron filings will have rings which are more closely arranged to each other as the strength of the magnetic field is increased
ii. As the number of turns is increased, the magnetic field is increased
Explanation:
The period of the pendulum is directly proportional to the square root of the length of the pendulum
Explanation:
The period of a simple pendulum is given by the equation

where
T is the period
L is the length of the pendulum
g is the acceleration of gravity
From the equation, we see that when the length of the pendulum increases, the period of the pendulum increases as the square root of L,
. This means that
The period of the pendulum is directly proportional to the square root of the length of the pendulum
From the equation, we also notice that the period of a pendulum does not depend on its mass.
#LearnwithBrainly
Answer:
They would decline
Explanation:
They would either migrate, or die.
Answer:
<em>4.67 N of force are required</em>
Explanation:
The second Newton's law states the net force exerted on a body of mass m that has an acceleration a, is given by:
F=m.a
On the other hand, the kinematics equations relate the acceleration with the change of speed over time, expressed as:

We are given the initial speed of vo=4 m/s on a mass of m=3.5 Kg, the final speed of vf=8 m/s which took t=3 seconds.
The acceleration is:


Thus, the force is:


4.67 N of force are required