Answer: <em>An object at rest remains at rest, or if in motion, remains in motion at a constant velocity unless acted on by a net external force.</em>
Explanation: meaning, an object will continue in its same direction until stopped or acted upon by another force.
Answer:

Explanation:
As we know that mass is the product of volume and density
so we will have

here we have

so we will have

so we will have


now let the position of Pluto is at origin so we have




Jemima is running with a velocity of 5m/s. She has a mass of 65kg, what is her kinetic energy would be 812.5 Joules.
<h3>What is mechanical energy?</h3>
Mechanical energy is the combination of all the energy in motion represented by total kinetic energy and the total stored energy in the system which is represented by total potential energy.
As given in the problem we have to calculate the Kinetic energy of the Jemima,
Kinetic energy = 1/2 ×mass×velocity²
=0.5×65×5²
=812.5 Joules
Thus, the kinetic energy of the Jemima would be 812.5 Joules.
To learn more about mechanical energy, refer to the link;
brainly.com/question/12319302
#SPJ1
Answer:
(D) friction from the ground changes the ball's
kinetic energy into heat
Explanation:
When a ball is roll on the ground, the electrons in the atoms on the surface of the ground push against the electrons in the atoms on the surface of your ball that is touching the ground. A rolling ball stops because the surface on which it rolls resists its motion,that is when two surfaces come in contact with each other, the surface of one tends to oppose the motion of the other. A rolling ball stops because of friction.
Using the rotational equivalent of force:
Which is T = I*Alpha
Where: T is torque, I is the moment of inertia and Alpha is
the angular acceleration.
This is for the flywheel: J = 1/2mr^2 = 5*3^2 = 45
kgm^2
From the equation:
T = J*dω/dt
we get:
Δt = J*Δω/T = 45*8.13/110.0 = 3.326 sec