Examples of such quantities include distance, displacement, speed, velocity, acceleration, force, mass, momentum, energy, work, power, etc. All these quantities can by divided into two categories - vectors and scalars. A vector quantity is a quantity that is fully described by both magnitude and direction.
Answer:
Explanation:
I am sitting on a train car traveling horizontally at a constant speed of 50 m/s. I throw a ball straight up into the air. Before , the ball gets separated from my hand , both me the ball will be moving with velocity of 50 m /s in horizontal direction .
As soon as ball is separated from the hand , it acquires addition velocity in upward direction and acceleration in downward direction . This will give relative velocity to the ball with respect to me . So I will see the ball going in upward direction under gravitational acceleration . It appears as if I am sitting at rest and ball is going in upward direction under deceleration . My motion at 50 m/s will have no effect on the motion of ball in upward direction , according to first law of Newton . It is so because ball too will be moving in forward direction with the same speed which will not be visible to me because I too am moving with the same speed.
If I am sitting at rest at home and I threw a ball straight up into the air , I will have the same experience of seeing ball going in similar way as described above.
A ball falling through the air has a mass, a density, a volume...it is facing air resistance and is being acted on by gravity...it is accelerating and gaining velocity...and it is increasing in kinetic energy.
I suppose out of all those the biggest thing the ball has in this case is ENERGY. There are two main types to focus on...
Kinetic Energy - The further the ball fall the more KE it has...until terminal velocity is reach, then KE would become constant.
Potential Energy - Conversely to that of KE, the further the ball falls the less PE it will have.
<em>Heat/Thermal Energy is technically also present due to the friction from the air resistance, but the transfer of energy between the air and ball is quite complex and not necessary important for basic physics.
</em>
The question itself seem kind of vague and open ended, but I could just be viewing it the wrong way.
Comment if you need more help!
Answer:
products would appear after the raw materials
Explanation:
raw material + raw material = product (anything deriving from combining two materials)
Answer:
Say a 14 year old girl was at a construction site and she was asked to move something like a 10,000 pound brick( one brick). She would be acting on it as the unbalanced force but they would still not change their position.
so to say the girl would be doing everything she could to move that brick but the brick would still be in that same spot so the unbalanced force (the girl) would be acting on the thing that was at rest but it wouldn't move.
so the unbalanced force would not really be acting on the thing at rest; even though the unbalanced force was doing something to the brick.
( just think about it and you will eventually get it...just imagine in your head...)
Explanation: