Cosine is

which applies to a right triangle. I hope that helps you.
Answer:

Step-by-step explanation:

<h3>so the dividend and divisor were both multiplied by 100.</h3>
Answer:
If one of the data points has the form \displaystyle \left(0,a\right)(0,a), then a is the initial value. Using a, substitute the second point into the equation \displaystyle f\left(x\right)=a{\left(b\right)}^{x}f(x)=a(b)
x
, and solve for b.
If neither of the data points have the form \displaystyle \left(0,a\right)(0,a), substitute both points into two equations with the form \displaystyle f\left(x\right)=a{\left(b\right)}^{x}f(x)=a(b)
x
. Solve the resulting system of two equations in two unknowns to find a and b.
Using the a and b found in the steps above, write the exponential function in the form \displaystyle f\left(x\right)=a{\left(b\right)}^{x}f(x)=a(b)
x
.
Step-by-step explanation:
First we need to write the null and alternate hypothesis for this case.
Let x be the average number of text message sent. Then
Null hypothesis: x = 100
Alternate hypothesis: x > 100
The p value is 0.0853
If p value > significance level, then the null hypothesis is not rejected. If p value < significance level, then the null hypothesis is rejected.
If significance level is 10%(0.10), the p value will be less than 0.10 and we reject the null hypothesis and CAN conclude that:
The mean number of text messages sent yesterday was greater than 100.
If significance level is 5%(0.05), the p value will be greater than 0.05 and we cannot reject the null hypothesis and CANNOT conclude that:
The mean number of text messages sent yesterday was greater than 100.
Answer:
23. 
24. 
25. 
26. 
27. 
28. 
Step-by-step explanation:
To solve these i used SOHCAHTOA

23.
Find the missing side using Tangent



24.
Find the missing side using Tangent



25.
Find the missing side using Tangent



26.
Find the missing side using Tangent



27.
Find the missing side using Tangent



28.
Find the missing side using Tangent


