Its moves more, If an object moves it has a kinetic enegy
Answer:
yeah
Explanation:
as wavelength increases frequency decreases and it goes the same for the opposite way
Answer:
A general solution is
and a particualr case is mgh, it is just to distance around the radius Earth.
Explanation:
We can use a general equation of the potential energy to understand the particular and general case:
The potential energy is defined as
, we know that the gravitational force is
, so we could find the potential energy taking the integral of F.
(1)
We can find the particular case, just finding the gravitational potential energy difference:
. Here Uf is the potential evaluated in r+Δh and Ui is the potential evaluated in r.
Using (1) we can calculate ΔU.

Simplifying and combining terms we have a simplified expression.
(2)
Let's call
. It is the acceleration due to gravity on the Earth's surface, if r is the radius of Earth and M is the mass of the Earth and we can write (2) as ΔU=mgh, but if we have distance grader than r we should use (2), otherwise, we could get incorrect values of potential energy.
I hope i hleps you!
Answer:
Option"B" is correct.
Explanation:
when a body move with constant velocity then acceleration is zero.
Answer:
option c
Explanation:
Kinetic energy is due to the speed of a body.

When speed is doubled, the kinetic energy is quadruple.
From third equation of motion, braking distance is also proportional to square of speed. Thus, when speed is doubled, the braking distance is quadruple.
Thus, option c is correct.