Answer:
Explanation:
Particles in all states of matter are in constant motion and this is very rapid at room temperature. A rise in temperature increases the kinetic energy and speed of particles; it does not weaken the forces between them. The particles in solids vibrate about fixed positions; even at very low temperatures.
Even with all of these state changes, it is important to remember that the substance stays the same—it is still water, which consists of two hydrogen atoms and one oxygen atom. Changing states of matter are only physical changes; the chemical properties of the matter stays the same regardless of its physical state!
5.972 × 10^24 kg
it is the weight of earth
hope it is helpful to you
1350kgm/s
Explanation:
Given parameters:
Mass of Sam = 75kg
Velocity = 18m/s
Unknown:
Momentum = ?
Solution:
Momentum is the property of a moving body with respect to its mass and velocity.
Objects in motion have momentum. The more the velocity of a body, the more its momentum. Also, the more the mass of an object, the more momentum it possess.
Momentum is a function of the mass and the velocity of a body
Momentum = mass x velocity
Momentum = 75 x 18 = 1350kgm/s
learn more:
Conservation of momentum brainly.com/question/2990238
#learnwithBrainly
Answer:
205 V
V
= 2.05 V
Explanation:
L = Inductance in Henries, (H) = 0.500 H
resistor is of 93 Ω so R = 93 Ω
The voltage across the inductor is

w = 500 rad/s
IwL = 11.0 V
Current:
I = 11.0 V / wL
= 11.0 V / 500 rad/s (0.500 H)
= 11.0 / 250
I = 0.044 A
Now
V
= IR
= (0.044 A) (93 Ω)
V
= 4.092 V
Deriving formula for voltage across the resistor
The derivative of sin is cos
V
= V
cos (wt)
Putting V
= 4.092 V and w = 500 rad/s
V
= V
cos (wt)
= (4.092 V) (cos(500 rad/s )t)
So the voltage across the resistor at 2.09 x 10-3 s is which means
t = 2.09 x 10⁻³
V
= (4.092 V) (cos (500 rads/s)(2.09 x 10⁻³s))
= (4.092 V) (cos (500 rads/s)(0.00209))
= (4.092 V) (cos(1.045))
= (4.092 V)(0.501902)
= 2.053783
V
= 2.05 V
Answer:
658.16N
Explanation:
Step one:
given data
mass m= 235kg
Force F= 760N
angle= 30 degrees
Required
The horizontal component of the force
Step two:
The horizontal component of the force
Fh= 760cos∅
Fh=760cos30
Fh=760*0.8660
Fh=658.16N