Answer: When the car speed triples, momentum also triples but Kinetic energy increases 9 times or by 9 fold.
Explanation:
The momentum of a car (an object) is
p= mv
where
m is =the mass of the object( in this case car)
v is its= velocity
While the kinetic energy is is given by the formulae
K=1/2mv²
To determine how momentum and kinetic energy of the car changes when the speed of the object triples, We have that the new velocity,
v¹= 3v
So that the momentum change becomes
p¹=mv¹=m (3v)= 3mv
mv=p
therefore p¹= 3p
we can see that the momentum also triples.
And the kinetic energy change becomes
K¹=1/2m(v¹)²= 1/2m (3v)²
= 1/2m9v²= 1/2 x m x 9 x v²=9 x1/2mv²
1/2mv²=K
K¹= Kinetic energy = 9k
but Kinetic energy increases 9 times
Answer:
<em><u>1</u></em><em><u>.</u></em><em><u> </u></em><em><u>T</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>a</u></em><em><u>b</u></em><em><u>i</u></em><em><u>l</u></em><em><u>i</u></em><em><u>t</u></em><em><u>y</u></em><em><u> </u></em><em><u>o</u></em><em><u>f</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>b</u></em><em><u>o</u></em><em><u>d</u></em><em><u>y</u></em><em><u> </u></em><em><u>t</u></em><em><u>o</u></em><em><u> </u></em><em><u>d</u></em><em><u>o</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>w</u></em><em><u>o</u></em><em><u>r</u></em><em><u>k</u></em><em><u> </u></em><em><u>i</u></em><em><u>s</u></em><em><u> </u></em><em><u>c</u></em><em><u>a</u></em><em><u>l</u></em><em><u>l</u></em><em><u>e</u></em><em><u>d</u></em><em><u> </u></em><em><u>e</u></em><em><u>n</u></em><em><u>e</u></em><em><u>r</u></em><em><u>g</u></em><em><u>y</u></em><em><u>.</u></em><em><u> </u></em>
<em><u>2</u></em><em><u>.</u></em><em><u> </u></em><em><u>T</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>S</u></em><em><u>.</u></em><em><u>I</u></em><em><u>.</u></em><em><u> </u></em><em><u>u</u></em><em><u>n</u></em><em><u>i</u></em><em><u>t</u></em><em><u> </u></em><em><u>o</u></em><em><u>f</u></em><em><u> </u></em><em><u>e</u></em><em><u>n</u></em><em><u>e</u></em><em><u>r</u></em><em><u>g</u></em><em><u>y</u></em><em><u> </u></em><em><u>i</u></em><em><u>s</u></em><em><u> </u></em><em><u>j</u></em><em><u>o</u></em><em><u>u</u></em><em><u>l</u></em><em><u>e</u></em><em><u>(</u></em><em><u>J</u></em><em><u>)</u></em><em><u>.</u></em>
<em><u>3</u></em><em><u>.</u></em><em><u>T</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>d</u></em><em><u>i</u></em><em><u>f</u></em><em><u>f</u></em><em><u>e</u></em><em><u>r</u></em><em><u>e</u></em><em><u>n</u></em><em><u>t</u></em><em><u> </u></em><em><u>t</u></em><em><u>y</u></em><em><u>p</u></em><em><u>e</u></em><em><u>s</u></em><em><u> </u></em><em><u>o</u></em><em><u>f</u></em><em><u> </u></em><em><u>e</u></em><em><u>n</u></em><em><u>e</u></em><em><u>r</u></em><em><u>g</u></em><em><u>y</u></em><em><u> </u></em><em><u>a</u></em><em><u>r</u></em><em><u>e</u></em><em><u> </u></em><em><u>:</u></em>
- <em><u>M</u></em><em><u>e</u></em><em><u>c</u></em><em><u>h</u></em><em><u>a</u></em><em><u>n</u></em><em><u>i</u></em><em><u>c</u></em><em><u>a</u></em><em><u>l</u></em><em><u> </u></em><em><u>E</u></em><em><u>n</u></em><em><u>e</u></em><em><u>r</u></em><em><u>g</u></em><em><u>y</u></em>
- <em><u>H</u></em><em><u>e</u></em><em><u>a</u></em><em><u>t</u></em><em><u> </u></em><em><u>E</u></em><em><u>n</u></em><em><u>e</u></em><em><u>r</u></em><em><u>g</u></em><em><u>y</u></em>
- <em><u>L</u></em><em><u>i</u></em><em><u>g</u></em><em><u>h</u></em><em><u>t</u></em><em><u> </u></em><em><u>E</u></em><em><u>n</u></em><em><u>e</u></em><em><u>r</u></em><em><u>g</u></em><em><u>y</u></em>
- <em><u>S</u></em><em><u>o</u></em><em><u>u</u></em><em><u>n</u></em><em><u>t</u></em><em><u> </u></em><em><u>E</u></em><em><u>n</u></em><em><u>e</u></em><em><u>r</u></em><em><u>g</u></em><em><u>y</u></em>
- <em><u>E</u></em><em><u>l</u></em><em><u>e</u></em><em><u>c</u></em><em><u>t</u></em><em><u>r</u></em><em><u>i</u></em><em><u>c</u></em><em><u>a</u></em><em><u>l</u></em><em><u> </u></em><em><u>E</u></em><em><u>n</u></em><em><u>e</u></em><em><u>r</u></em><em><u>g</u></em><em><u>y</u></em><em><u> </u></em>
- <em><u>M</u></em><em><u>a</u></em><em><u>g</u></em><em><u>n</u></em><em><u>e</u></em><em><u>t</u></em><em><u>i</u></em><em><u>c</u></em><em><u> </u></em><em><u>E</u></em><em><u>n</u></em><em><u>e</u></em><em><u>r</u></em><em><u>g</u></em><em><u>y</u></em><em><u> </u></em>
- <em><u>C</u></em><em><u>h</u></em><em><u>e</u></em><em><u>m</u></em><em><u>i</u></em><em><u>c</u></em><em><u>a</u></em><em><u>l</u></em><em><u> </u></em><em><u>E</u></em><em><u>n</u></em><em><u>e</u></em><em><u>r</u></em><em><u>g</u></em><em><u>y</u></em><em><u> </u></em>
- <em><u>N</u></em><em><u>u</u></em><em><u>c</u></em><em><u>l</u></em><em><u>e</u></em><em><u>a</u></em><em><u>r</u></em><em><u> </u></em><em><u>E</u></em><em><u>n</u></em><em><u>e</u></em><em><u>r</u></em><em><u>g</u></em><em><u>y</u></em><em><u> </u></em>
Explanation:
<h3 /><h3><em><u>H</u></em><em><u>o</u></em><em><u>p</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>t</u></em><em><u> </u></em><em><u>w</u></em><em><u>o</u></em><em><u>r</u></em><em><u>k</u></em><em><u>s</u></em><em><u> </u></em><em><u>o</u></em><em><u>u</u></em><em><u>t</u></em><em><u> </u></em><em><u>!</u></em><em><u>!</u></em></h3>
Answer:

Explanation:
<u>Friction Force</u>
When objects are in contact with other objects or rough surfaces, the friction forces appear when we try to move them with respect to each other. The friction forces always have a direction opposite to the intended motion, i.e. if the object is pushed to the right, the friction force is exerted to the left.
There are two blocks, one of 400 kg on a horizontal surface and other of 100 kg on top of it tied to a vertical wall by a string. If we try to push the first block, it will not move freely, because two friction forces appear: one exerted by the surface and the other exerted by the contact between both blocks. Let's call them Fr1 and Fr2 respectively. The block 2 is attached to the wall by a string, so it won't simply move with the block 1.
Please find the free body diagrams in the figure provided below.
The equilibrium condition for the mass 1 is

The mass m1 is being pushed by the force Fa so that slipping with the mass m2 barely occurs, thus the system is not moving, and a=0. Solving for Fa
![\displaystyle F_a=F_{r1}+F_{r2}.....[1]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20F_a%3DF_%7Br1%7D%2BF_%7Br2%7D.....%5B1%5D)
The mass 2 is tried to be pushed to the right by the friction force Fr2 between them, but the string keeps it fixed in position with the tension T. The equation in the horizontal axis is

The friction forces are computed by


Recall N1 is the reaction of the surface on mass m1 which holds a total mass of m1+m2.
Replacing in [1]

Simplifying

Plugging in the values
![\displaystyle F_{a}=0.25(9.8)[400+2(100)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20F_%7Ba%7D%3D0.25%289.8%29%5B400%2B2%28100%29%5D)

The answer is 2 because a and b are slowing it down by condensing it and then freezing it so its not one, b and c are opposites because b slows it down whereas c speeds it up so its not 3, and number 4 is the same explanation for number 3
hope you pass :)
Answer:
angular velocity(ω) is the rate change of angular displacement.
ω=θ/t and it SI unit is rad/s
Explanation:
this is very similar with the definition of linear velocity (rate of change of displacement). it specifies the angular speed of an object and the axis about which the object is rotating.