<em>Five household items that </em><em>contain</em><em> the same chemicals as cigarettes :</em><em>-</em>
- <em>Perfume</em>
- <em>Household</em><em> </em><em>cleaning</em><em> </em><em>products</em>
- <em>Beauty</em><em> </em><em>Products</em>
- <em>Sunscreen</em>
- <em>Water</em><em> </em><em>bottles</em>
<em>They</em><em> </em><em>contain</em><em> </em><em>toxic</em><em> </em><em>substances</em><em>!</em>
<em>hope</em><em> </em><em>it</em><em> </em><em>helps</em><em>!</em>
Answer:
Decomposition reaction.
Explanation:
2HI —> H₂ + I₂
From the above equation, we can see clearly that HI undergoes a reaction to produce H₂ and I₂ which are the elements that make up HI.
Therefore, the equation illustrated above is a decomposition reaction because HI breaks into H₂ and I₂
NOTE: Decomposition reaction is a reaction in which a compound splits or breakdown into two or more simple elements or compound.
Answer:
The correct answer is c) Electronegativity
Explanation:
The Z corresponds to the atomic number (defines the number of protons in the nucleus and also the electrons present in the atom). The Z increases from left to right in the same period, this is due to less shielding of the electrons in the last layer. Electronegativity (defined as the ability of the atoms to attract, in a covalent chemical bond, the electrons that it shares with other atoms), increases, the greater the Z (there is less distance).
Answer:
di ko gets haha yawa ka jj
Answer:
Hi
The high dipole moment of water and its ease in forming hydrogen bonds make it an excellent analysis. A molecule is soluble in water if it can interact with its molecules through hydrogen bonds or ion-dipole interactions.
With anions that have oxygen they can form hydrogen bonds, since oxygen acts as their acceptor. The attraction of the anion on the water dipole must be taken into account. The same goes for Cl-F, which have solitary electron pairs and can act as hydrogen bridge acceptors. On the other hand, cations such as Na+, K+, Ca++ or Mg++ are surrounded by water molecules to which they are joined by dipole ion interactions while oxygen atoms are oriented towards the catión.
Explanation: