Answer:
Half life is the time taken by a radio active isotope to reduce by half of its original amount. Radium-226 has a half life of 1602 years meaning that it would take 1602 years for a mass of radium to reduce by half.
Number of half lives in 9612 years = 9612/1602 = 6 half lives
New mass = Original mass x (1/2)n where n is the number of half lives.
Therefore, New mass= 500 x (1/2)∧6
= 500 x 0.015625
= 7.8125 g
Hence the mass of radium after 9612 years will be 7.8125 grams.
Explanation:
P1T2 = P2T1
(3.8)(36)=25P2
136.8=25P2
136.8/25=P2
P2=5.472atm
F because it NEVER forms any cations in chemical reactions
Answer:
Bonds are polar when one element in a compound is more electronegative than the other. This creates a dipole in the molecule where one end of the molecule is partially positive and one end is partially negative
Explanation:
Answer : The expression for reaction quotient will be :
(1) ![Q_c=\frac{[SO_2][HF]^4}{[SF_4]}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BSO_2%5D%5BHF%5D%5E4%7D%7B%5BSF_4%5D%7D)
(2) ![Q_c=\frac{[O_2]^2[Xe]}{[XeF_2]}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BO_2%5D%5E2%5BXe%5D%7D%7B%5BXeF_2%5D%7D)
Explanation :
Reaction quotient
: It is defined as the measurement of the relative amounts of products and reactants present during a reaction at a particular time.
(1) The given balanced chemical reaction is,

In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted. So, the expression for reaction quotient will be :
![Q_c=\frac{[SO_2][HF]^4}{[SF_4]}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BSO_2%5D%5BHF%5D%5E4%7D%7B%5BSF_4%5D%7D)
(2) The given balanced chemical reaction is,
![2MoO_2(s)+XeF_2(g)\rightarrow 2MoF(l)+Xe(g)+2O_2(g)[/texIn this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted. So, the expression for reaction quotient will be :[tex]Q_c=\frac{[O_2]^2[Xe]}{[XeF_2]}](https://tex.z-dn.net/?f=2MoO_2%28s%29%2BXeF_2%28g%29%5Crightarrow%202MoF%28l%29%2BXe%28g%29%2B2O_2%28g%29%5B%2Ftex%3C%2Fp%3E%3Cp%3EIn%20this%20expression%2C%20only%20gaseous%20or%20aqueous%20states%20are%20includes%20and%20pure%20liquid%20or%20solid%20states%20are%20omitted.%20%20So%2C%20the%20expression%20for%20reaction%20quotient%20will%20be%20%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DQ_c%3D%5Cfrac%7B%5BO_2%5D%5E2%5BXe%5D%7D%7B%5BXeF_2%5D%7D)