1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mnenie [13.5K]
3 years ago
12

(f) what is the observed rotation of 100 ml of a solution that contains 0.01 mole of d and 0.005 mole of l? (assume a 1-dm path

length.)
Chemistry
2 answers:
s2008m [1.1K]3 years ago
7 0

Observed rotation of solution that consist of 0.01 mole of D and 0.005 mole L is \boxed{{{0}}{\text{.01299 }}{\text{degrees}}}

Further explanation:

The specific rotation associated with a chiral molecule is defined as observed rotation concentration per unit path length of the polarimeter per unit concentration of solute.

The formula to calculate concentration from number of moles is as follows:

{\text{Concentration}}\left( {{\text{g/L}}} \right) = {\text{Molarity}}\left( {{\text{mol/L}}} \right) \times {\text{molar}}\,{\text{mass}}\left( {{\text{g/mol}}} \right)                                            …… (1)

Substitute 0.100{\text{ M}} for molarity and 150{\text{ g/mol}} for molar mass in equation (1).

\begin{aligned}{\text{Concentration}}\left( {{\text{g/L}}} \right) &= 0.100{\text{ M}} \times 150{\text{ g/mol}}\\&= 15{\text{ g/L}}\\\end{aligned}

The formula to calculate specific rotation is as follows:  

\left[ \alpha\right]=\dfrac{{\,\alpha }}{{l \times c}}      …… (2)                                                                        

Here,

\alpha represents the rotation in degrees caused by the polarimeter.

l represents the path length.

c represents the concentration.

Substitute 0.26^\circ for \alpha , 1{\text{ dm}} for l and 15{\text{ g/L}} for c.

 \begin{aligned}\left[ \alpha\right] &= \frac{{0.26^\circ }}{{1{\text{ dm}} \times 15{\text{ g/L}}}} \\&= 0.01733{\text{ deg}} \cdot {\text{L/g}} \cdot {\text{dm}}\\\end{aligned}

Since the D isomer is present in excess.  Its excess amount can be determined as follows:

\begin{aligned}{\text{Excess D - isomer}}&= \left( {0.01{\text{ mol}} - {\text{0}}{\text{.005}}\;{\text{mol}}} \right)\\&= 0.005{\text{ mol}}\\\end{aligned}

The formula to calculate molarity is as follows:

{\text{Molarity}}\left( {{\text{mol/mL}}} \right){\text{ = }}\dfrac{{{\text{Number of moles}}}}{{{\text{volume}}}} \times 1000  

Substitute 0.005{\text{ mol}}  for number of moles and 100{\text{ mL}} for volume to calculate molarity of excess D-isomer.

\begin{aligned}(\text{Molarity}\left({mol/mL} \right) &= \frac{{0.005 mol}}{{100}} \times 1000\\&= 0.05 M\\\end{aligned}

Substitute 0.05 M for molarity and 150{\text{ g/mol}} for molar mass in equation (1).

\begin{aligned}{\text{Concentration}}\left( {{\text{g/L}}} \right)&= \left( {0.05 M} \right)\left( {150{\text{ g/mol}}} \right)\\&= 7.5{\text{ g/L}}\\\end{aligned}

Rearrange equation (2) calculate the observed rotation

\alpha = \left[ \alpha  \right] \times l \times c                           …… (3)

Substitute 0.01733{\text{ deg}} \cdot {\text{L/g}} \cdot {\text{dm}} for \left[ \alpha  \right], 1{\text{ dm}} for l and {\text{7}}{\text{.5 g/L}} for c in the equation (3).

\begin{aligned}\alpha&= \left( {0.01733{\text{ deg}} \cdot {\text{L/g}} \cdot {\text{dm}}} \right)\left( {1{\text{ dm}}} \right)\left( {{\text{7}}{\text{.5 g/L}}} \right)\\&= {\text{0}}{\text{.01299 }}{\text{degrees}}\\\end{aligned}

 

Learn more:

1. Calculation of volume of gas: brainly.com/question/3636135

2. Determine how many moles of water produce: brainly.com/question/1405182

Answer details:  

Grade: Senior School

Subject: Chemistry

Chapter: Stereochemistry

Keywords: specific rotation, concentration, polarimeter, excess D-isomer, molar mass, molarity, chiral, enantiomeric excess, and observed rotation.

never [62]3 years ago
4 0
<span>Answer: .01 moles of D to .005 moles of L ~ so, .01+.005 = .015 total; using this total value, divide the portions of D and L. so .01/.015 to .005/.015 ~ 67% D to 33% L. And thus, the enantiomer excess will be 34%.</span>
You might be interested in
How does the law of conservation of mass relate to the number of atoms of each element that are present before a reaction vs. th
TiliK225 [7]
The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as system's mass cannot change, so quantity cannot be added nor removed. Hence, the quantity of mass is conserved over time.

The law implies that mass can neither be created nor destroyed, although it may be rearranged in space, or the entities associated with it may be changed in form. For example, in chemical reactions, the mass of the chemical components before the reaction is equal to the mass of the components after the reaction. Thus, during any chemical reaction and low-energy thermodynamic processes in an isolated system, the total mass of the reactants, or starting materials, must be equal to the mass of the products.

According to the Law of Conservation, all atoms of the reactant(s) must equal the atoms of the product(s).
As a result, we need to balance chemical equations. We do this by adding in coefficients to the reactants and/or products. The compound(s) itself/themselves DOES NOT CHANGE.
6 0
3 years ago
** WILL MARK BRAINLIEST **
hram777 [196]

It is c I hope I helped out with this question!.

3 0
3 years ago
Read 2 more answers
The gas pressure inside a container decreases when which of the following happens? the number of molecules is increased and the
ASHA 777 [7]

<h2><em>can't understand your question..... can u explain me May </em><em>b</em><em>e</em><em> I can help u!</em></h2><h2 /><h2 />
7 0
3 years ago
A 33.69 g sample of a substance is initially at 29.4 °c. after absorbing 1623 j of heat, the temperature of the substance is 110
Sliva [168]
Q= mcΔT
1623 = 33.69g x c x (110.8 - 29.4)
1623 = 2742.366 g•°C x c
c = 0.59j/g•°C
4 0
3 years ago
Iron and aluminum are examples of _____________.<br><br> <br><br>​
LenKa [72]

Answer:

Iron and aluminum are examples of metals, along with copper, iron, (etc.)

6 0
3 years ago
Other questions:
  • Is a nusleus in a cell
    6·1 answer
  • Kemmi Major does some experimental work on the combustion of sucrose: C12H22O11(s) 12 O2(g) → 12 CO2(g) 11 H2O(g) She burns a 0.
    13·1 answer
  • List the elements in the increasing order of their electronegativity. Give reasons for your answer.
    11·1 answer
  • What metal has 95 protons Lead, mercury, americium, or francium?
    7·1 answer
  • 1. How many grams would 8.1 x 1021 molecules of sucrose (C12H22011)<br> weigh?
    5·1 answer
  • How many grams of sodium are in<br> 1.000 mole of sodium?
    13·2 answers
  • Electrolysis is an endothermic process when an electric current is passed through water and separates it into hydrogen and oxyge
    14·1 answer
  • Order these by size/complexity in descending order. (largest/most complex on top) Reorder answers
    12·1 answer
  • Gravitational Potential Energy is created when an object’s what changes
    14·1 answer
  • HELPPPPPP<br>Calculate the frequency of light with a wavelength 559nm​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!