Answer:
1.427x10^-3mol per L
Explanation:

I could use ⇌ in the math editor so I used ----
from the question each mole of Y(IO3)3 is dissolved and this is giving us a mole of Y3+ and a mole of IO3^3-
Ksp = [Y^3+][IO3-]^3
So that,
1.12x10^-10 = [S][3S]^3
such that
1.12x10^-10 = 27S^4
the value of s is 0.001427mol per L
= 1.427x10^-3mol per L
so in conclusion
the molar solubility is therefore 1.427x10^-3mol per L
the answer is c. Gas molecules will never collide with the walls of the container
Answer:
14 mol e⁻
Explanation:
Step 1: Write the balanced half-reaction for the reduction of permanganate to manganese
8 H⁺(aq) + 7 e⁻ + MnO₄⁻(aq) ⇒ Mn(s) + 4 H₂O(l)
Step 2: Calculate the moles corresponding to 110 g of manganese
The molar mass of Mn is 55 g/mol.
110 g × 1 mol/55 g = 2 mol
Step 3: Calculate the number of moles of electrons needed to produce 2 moles of Mn
According to the half-reaction, 7 moles of electrons are required to produce 1 mole of Mn.
2 mol Mn × 7 mol e⁻/1 mol Mn = 14 mol e⁻
Answer:
sun
Explanation:
because all plants use energy from the sun to make food and grow
Answer:
Ok so, b. A redox reaction occurs in an electrochemical cell, where silver (Ag) is oxidized and nickel (Ni) is reduced - In voltaic cells, also called galvanic cells, oxidation occurs at the anode and reduction occurs at the cathode. A mnemonic for this is "An Ox. Red Cat." So since silver is oxidized, the silver half-cell is the anode. And the nickel half-cell is the cathode...
i. Write the half-reactions for this reaction, indicating the oxidation half-reaction and the reduction half-reaction- The substance having highest positive  potential will always get reduced and will undergo reduction reaction. Here, zinc will always undergo reduction reaction will get reduced
ii. Which metal is the anode, and which is the cathode?-The anode is where the oxidation reaction takes place. In other words, this is where the metal loses electrons. The cathode is where the reduction reaction takes place.
iii. Calculate the standard potential (voltage) of the cell
Look up the reduction potential,
E
⁰
red
, for the reduction half-reaction in a table of reduction potentials
Look up the reduction potential for the reverse of the oxidation half-reaction and reverse the sign to obtain the oxidation potential. For the oxidation half-reaction,
E
⁰
ox
=
-
E
⁰
red
.
iv. What kind of electrochemical cell is this? Explain your answer.
All parts in the electrochemical cells are labeled in second figure. Following are the part in electrochemical cells
1) Anode 2) Cathode 3) gold Stripe (Electrode) 4) Aluminium Glasses (Electrode) 5) Connecting wires 6) Battery
Explanation: