1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ira [324]
3 years ago
14

The empirical formula for a compound that is 1.2% h, 42.0%cl, and 56.8%o is

Chemistry
1 answer:
Charra [1.4K]3 years ago
7 0
Hope you understand how to work out those types of questions now xD ;)

You might be interested in
How many alkali metals will combine with 1 oxygen family member
Daniel [21]
The alkali metals are so reactive that they are never found in nature in elemental form. Although some of their ores are abundant, isolating them from their ores is somewhat difficult. For these reasons, the group 1 elements were unknown until the early 19th century, when Sir Humphry Davy first prepared sodium (Na) and potassium (K) by passing an electric current through molten alkalis. (The ashes produced by the combustion of wood are largely composed of potassium and sodium carbonate.) Lithium (Li) was discovered 10 years later when the Swedish chemist Johan Arfwedson was studying the composition of a new Brazilian mineral. Cesium (Cs) and rubidium (Rb) were not discovered until the 1860s, when Robert Bunsen conducted a systematic search for new elements. Known to chemistry students as the inventor of the Bunsen burner, Bunsen’s spectroscopic studies of ores showed sky blue and deep red emission lines that he attributed to two new elements, Cs and Rb, respectively. Francium (Fr) is found in only trace amounts in nature, so our knowledge of its chemistry is limited. All the isotopes of Fr have very short half-lives, in contrast to the other elements in group 1.
7 0
3 years ago
En un experimento hacemos reaccionar 12 g de carbono con 32 g de oxígeno para formar dióxido de carbono. Razona si podemos saber
max2010maxim [7]

Answer:

La masa de óxido de carbono iv formado es 44 g.

Explanation:

En esta pregunta, se nos pide calcular la masa de óxido de carbono iv formado a partir de la reacción de masas dadas de carbono y oxígeno.

En primer lugar, necesitamos escribir una ecuación química equilibrada.

C + O2 → CO2

De la ecuación, 1 mol de carbono reaccionó con 1 mol de oxígeno para dar 1 mol de óxido de carbono iv.

Ahora, si marca las masas en la pregunta, verá que corresponde a la masa atómica y la masa molar de la molécula de carbono y oxígeno, respectivamente. ¿Qué indica esto?

Como tenemos una relación molar de 1: 1 en todo momento, lo que esto significa es que la masa de óxido de carbono iv producida también es la misma que la masa molar de óxido de carbono iv.

Por lo tanto, procedemos a calcular la masa molar de óxido de carbono iv Esto es igual a 12 + 2 (16) = 12 + 32 = 44 g Por lo tanto, la masa de óxido de carbono iv formado es 44 g

5 0
3 years ago
Particles of matter how have both potential and kinetic energy is that true or false?
guapka [62]
False: No,any particles of matter do not have any potential or kinetic energy.

5 0
3 years ago
The number of glyceraldehyde-3-phosphate molecules that would be produced from 24 turns of the calvin cycle would be
SVEN [57.7K]
The Calvin cycle, also called the light-independent or carbon fixation reactions, is the second stage of photosynthesis where water, and carbon dioxide (CO2) from air, are converted into organic compounds (i.e. sugars) using the energy from short-lived electronically excited carriers (ATP and NADPH) for the reactions. These organic compounds can then be used by the producing organism (i.e. plants) and the animals that feed on it. 

One product of the Calvin cycle is the glyceraldehyde-3-phosphate (G3P), which is later on used in the production of glucose and in the regeneration of <span>Ribulose 1,5-bisphosphate (RuBP), which is an organic compound</span> essential to the reactions in the cycle. 

One turn of Calvin Cycle produces 2 G3P molecules, each comprising of 3 carbons. This gives a total of 6 carbons. Five (5) of these carbons will be used to regenerate RuBP and only 1 will be available to form a surplus G3P later on. This surplus G3P will be used for the production of glucose (a 6-carbon sugar). 

Thus, 3 turns of the carbon cycle will produce 1 surplus G3P. There are 8 sets of 3-turns in 24 cycles, therefore, 

                       1 net G3P molecule * 8 sets of 3-turns  = 8 G3P molecules

Therefore, there are 8 net or surplus G3P molecules produced for 24 cycles of the Calvin Cycle. The total G3P molecules produced, including the ones that participated in the regeneration of RuBP would be 48 G3Ps. 

For every 3 turns, 6 G3P molecules are produced, 5 of which will be used in the regeneration of RuBP and 1 will be the net or surplus, to be used for the production of glucose. The 48 G3Ps then come from the calculation, 

                       6 total G3P molecules * 8 sets of 3-turns  = 48 G3P molecules


The figure below shows the products of the cycle after 3 turns (Source: https://ka-perseus-images.s3.amazonaws.com/2f4bdc8f8275834d3f5ef434d93bf16b991b2357.png). 

7 0
3 years ago
PLS HELP
vivado [14]

Answer:

D. All of these.

Explanation:

5 0
3 years ago
Other questions:
  • HELP WILL MARK BRAINIEST IF ANSWER WAS RIGHT!
    5·1 answer
  • Barium has a density of 3.59 g/cm
    7·1 answer
  • Name the following chemical compound. NaBr
    12·2 answers
  • Which properties change the composition of a substance? A physical properties
    6·2 answers
  • In a chemical reaction, which is the MOST LIKELY reactant for these products?
    5·2 answers
  • A sample of a compound containing only carbon and hydrogen was burned to produce 1.36g of water and 5.22g of carbon dioxide. Cal
    15·1 answer
  • When iron reacts with oxygen, it forms iron oxide, or rust.
    9·1 answer
  • Molar mass for (NH4)2SO4
    8·1 answer
  • Why are the discrete lines observed and not a continuous spectrum?​
    14·1 answer
  • Below is the thermochemical equation for the combustion of octane.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!