|4| - |-5|
all the absolute numbers are always positive.
when you will open the brackets positive will remain positive and negative will change to positive so we get
4 - 5
= -1 Ans
Answer:
21 With glasses
Step-by-step explanation:
32/20=1.6
1.6•7=11.2 Without Glasses
1.6•13=20.8 With Glasses
20.8 rounded to nearest whole number=21
Answer:
5.4 in.
Step-by-step explanation:
Figuring out the area of shapes like these are quite simple, you first have to break apart this shape to make solving this easier. If you draw a line and break off the triangle from the square you will get 2 different shapes. A square with all the sides being 2 inches, and a triangle that is 2 inches tall and 1.4 inches across (you subtract 3.4 by 2). Next you just use the equation (2 * 2) + ((1.4 * 2)/2). Multiply 2 by 2 (which is 4) and you get the area of the square (you multiply the base by the width). And for the triangle you multiple 1.4 by 2 (you get 2.8)... But because it's a triangle you have to divide that number by 2 since the triangle is half of a square. So 2.8 / 2 is going to be 1.4. After that you now have the equation 4 + 1.4 and the answer is going to be 5.4.
Answer:
Simplify the expression.
Exact Form:
111129715061983798933/3
Decimal Form:
3.70432383⋅10^19
Step-by-step explanation:
Answer:

Step-by-step explanation:
The triangle in the given problem is a right triangle, as the tower forms a right angle with the ground. This means that one can use the right angle trigonometric ratios to solve this problem. The right angle trigonometric ratios are as follows;

Please note that the names (
) and (
) are subjective and change depending on the angle one uses in the ratio. However the name (
) refers to the side opposite the right angle, and thus it doesn't change depending on the reference angle.
In this problem, one is given an angle with the measure of (35) degrees, and the length of the side adjacent to this angle. One is asked to find the length of the side opposite the (35) degree angle. To achieve this, one can use the tangent (
) ratio.

Substitute,

Inverse operations,


Simplify,

