The number is 16. The factors are 1,2,4,8, and 16
Answer:
When y = |x + h|, the graph is shifted (or translated) <u>to the left.</u>
When y = |x - h|, the graph is shifted (or translated) <u>to the right.</u>
Step-by-step explanation:
Part A:
The parent function of vertex graphs are y = |x|, and any transformations done to y = |x| are shown in this format (also known as vertex form): y = a|x - h| + k
(h , k) is the vertex of the graph.
So, for the first part, what y = |x + h| is saying is y = |x - (-h)|.
The -h is substituted for h, and negatives cancel out, resulting in x + h.
This translates to the left of the graph.
Part B:
For the second part, y = |x - h| looks just like the normal vertex form. In this one, we are just plugging in a positive value for h.
This translates to the right of the graph.
Answer:
The answer is No, he's incorrect
Step-by-step explanation:
Because -5.0 is still -5 so therefore it makes -5.0 an integer
Answer is:
It includes points in quadrant II and it doesnt include points in quadrant I
Explanation:
For odd functions a rule is:
f(x) = -f(-x) or in other words
f(x) + f(-x) = 0
Because of this function can be in quadrants I and III or in quadrants II and IV as in pairs...
Answer:
V = (1/3)πr²h
Step-by-step explanation:
The volume of a cone is 1/3 the volume of a cylinder with the same radius and height.
Cylinder Volume = πr²h
Cone Volume = (1/3)πr²h
where r is the radius (of the base), and h is the height perpendicular to the circular base.
_____
<em>Comment on area and volume in general</em>
You will note the presence of the factor πr² in these formulas. This is the area of the circular base of the object. That is, the volume is the product of the area of the base and the height. In general terms, ...
V = Bh . . . . . for an object with congruent parallel "bases"
V = (1/3)Bh . . . . . for a pointed object with base area B.
This is the case for any cylinder or prism, even if the parallel bases are not aligned with each other. (That is, it works for oblique prisms, too.)
Note that the cone, a pointed version of a cylinder, has 1/3 the volume. This is true also of any pointed objects in which the horizontal dimensions are proportional to the vertical dimensions*. (That is, this formula (1/3Bh), works for any right- or oblique pyramid-like object.)
__
* in this discussion, we have assumed the base is in a horizontal plane, and the height is measured vertically from that plane. Of course, any orientation is possible.