<h3>I'll teach you how to solve (1/5x-4+2y)+(2/5x+5-4y)</h3>
-----------------------------------------------------------------
(1/5x-4+2y)+(2/5x+5-4y)
Remove parentheses:
1/5x-4+2y + 2/5x+5-4y
Group like terms:
1/5x+2/5x+2y-4y-4+5
Add similar elements:
3/5x+2y-4y-4+5
Add similar elements:
3/5x-2y-4+5
Multiply:
3x/5-2y-4+5
Add subtract the numbers:
3x/5+1-2y
Your Answer Is 3x/5+1-2y
plz mark me as brainliest :)
Determine which value is equivalent to | f ( i ) | if the function is: f ( x ) = 1 - x. We know that for the complex number: z = a + b i , the absolute value is: | z | = sqrt( a^2 + b^2 ). In this case: | f ( i )| = | 1 - i |. So: a = 1, b = - 1. | f ( i ) | = sqrt ( 1^2 + ( - 1 )^2) = sqrt ( 1 + 1 ) = sqrt ( 2 ). ANSWER IS C. sqrt( 2 )
Exact form : 4/3
decimal form : 1.3
Answer:
(
f
+
g
)
(
x
)
=
3
x
2
+
x
+
2
Explanation:
(
f
+
g
)
(
x
)
=
f
(
x
)
+
g
(
x
)
:
(
f
+
g
)
(
x
)
=
3
x
2
−
x
+
5
+
2
x
−
3
Add like terms:
(
f
+
g
)
(
x
)
=
3
x
2
+
(
−
x
+
2
x
)
+
(
5
−
3
)
(
f
+
g
)
(
x
)
=
3
x
2
+
x
+
2
(
f
+
g
)
(
x
)
=
3
x
2
+
x
+
2
Explanation:
(
f
+
g
)
(
x
)
=
f
(
x
)
+
g
(
x
)
:
(
f
+
g
)
(
x
)
=
3
x
2
−
x
+
5
+
2
x
−
3
Add like terms:
(
f
+
g
)
(
x
)
=
3
x
2
+
(
−
x
+
2
x
)
+
(
5
−
3
)
(
f
+
g
)
(
x
)
=
3
x
2
+
x
+
2
(
f
+
g
)
(
x
)
=
3
x
2
+
x
+
2
Explanation:
(
f
+
g
)
(
x
)
=
f
(
x
)
+
g
(
x
)
:
(
f
+
g
)
(
x
)
=
3
x
2
−
x
+
5
+
2
x
−
3
Add like terms:
(
f
+
g
)
(
x
)
=
3
x
2
+
(
−
x
+
2
x
)
+
(
5
−
3
)
(
f
+
g
)
(
x
)
=
3
x
2
+
x
+
2
Step-by-step explanation: