Answer:
George must run the last half mile at a speed of 6 miles per hour in order to arrive at school just as school begins today
Step-by-step explanation:
Here, we are interested in calculating the number of hours George must walk to arrive at school the normal time he arrives given that his speed is different from what it used to be.
Let’s first start at looking at how many hours he take per day on a normal day, all things being equal.
Mathematically;
time = distance/speed
He walks 1 mile at 3 miles per hour.
Thus, the total amount of time he spend each normal day would be;
time = 1/3 hour or 20 minutes
Now, let’s look at his split journey today. What we know is that by adding the times taken for each side of the journey, he would arrive at the school the normal time he arrives given that he left home at the time he used to.
Let the unknown speed be x miles/hour
Mathematically;
We shall be using the formula for time by dividing the distance by the speed
1/3 = 1/2/(2) + 1/2/x
1/3 = 1/4 + 1/2x
1/2x = 1/3 - 1/4
1/2x = (4-3)/12
1/2x = 1/12
2x = 12
x = 12/2
x = 6 miles per hour
|4| > |1|
Absolute value of 4 is just 4, and the abosulute valvue of 1 is just 1.
So , since 4 is greater than 1 , that would be your answer.
4 > 1
Answer:
Step-by-step explanation:
You will first have to find the area to find the price of each square yard.
Area is 8*12 = 96. Multiply this by 2.69.
It will cost 258.24 dollars to recarpet the shop.
Let me know if this helped
Answer:
probability that the other side is colored black if the upper side of the chosen card is colored red = 1/3
Step-by-step explanation:
First of all;
Let B1 be the event that the card with two red sides is selected
Let B2 be the event that the
card with two black sides is selected
Let B3 be the event that the card with one red side and one black side is
selected
Let A be the event that the upper side of the selected card (when put down on the ground)
is red.
Now, from the question;
P(B3) = ⅓
P(A|B3) = ½
P(B1) = ⅓
P(A|B1) = 1
P(B2) = ⅓
P(A|B2)) = 0
(P(B3) = ⅓
P(A|B3) = ½
Now, we want to find the probability that the other side is colored black if the upper side of the chosen card is colored red. This probability is; P(B3|A). Thus, from the Bayes’ formula, it follows that;
P(B3|A) = [P(B3)•P(A|B3)]/[(P(B1)•P(A|B1)) + (P(B2)•P(A|B2)) + (P(B3)•P(A|B3))]
Thus;
P(B3|A) = [⅓×½]/[(⅓×1) + (⅓•0) + (⅓×½)]
P(B3|A) = (1/6)/(⅓ + 0 + 1/6)
P(B3|A) = (1/6)/(1/2)
P(B3|A) = 1/3
Answer:
6384
Step-by-step explanation:
multiply 48, 16, and 7