Answer:
In these reactions the products are higher in energy than the reactants. ... This barrier is due to the fact that to make CO2 and H2O we have to break 4 carbon-hydrogen bonds and some ...
Explanation:
Explanation:
What is IEEE 802.11?
IEEE 802.11 is a set of WLAN standards for communication developed by the Institute for Electrical and Electronics Engineers (IEEE) and is unarguably most widely used WLAN technology.
Features: IEEE 802.11a
- The operating frequency band is 5 GHz.
- The maximum theoretical data rate is 54 Mbps, the typical throughput is around 25 Mbps and minimum data rate is 6 Mbps.
- It can support 64 users per access point.
Features: IEEE 802.11b
- The operating frequency band is 2.4 GHz.
- The maximum theoretical data rate is 11 Mbps but typical throughput is around 6 Mbps and minimum data rate is 1 Mbps.
- It can support 32 users per access point.
Wireless Coverage IEEE 802.11a Vs IEEE 802.11b:
- Signal coverage is one of the most important factors among users.
- The transmission range of IEEE 802.11a is not greater than 100 ft in indoor setting whereas IEEE 802.11b has a superior performance in this regard with transmission range up to 150 ft in indoor setting.
- The data rate has a direct relation with the access point coverage area, a higher data rate means less coverage area and a lower data rate results in increased coverage.
Answer:
Energy of Photon = 4.091 MeV
Explanation:
From the conservation of energy principle, we know that total energy of the system must remain conserved. So, the energy or particles before collision must be equal to the energy of photons after collision.
K.E OF electron + Rest Energy of electron + K.E of positron + Rest Energy of positron = 2(Energy of Photon)
where,
K.E OF electron = 3.58 MeV
Rest Energy of electron = 0.511 MeV
Rest Energy of positron = 0.511 MeV
K.E OF positron = 3.58 MeV
Energy of Photon = ?
Therefore,
3.58 MeV + 0.511 MeV + 3.58 MeV + 0.511 MeV = 2(Energy of Photon)
Energy of Photon = 8.182 MeV/2
<u>Energy of Photon = 4.091 MeV</u>
Answer:
The direction is due south
Explanation:
From the question we are told that
The energy of the electron is 
The earths magnetic field is 
Generally the force on the electron is perpendicular to the velocity of the elecrton and the magnetic field and this is mathematically reresented as

On the first uploaded image is an illustration of the movement of the electron
Looking at the diagram we can see that in terms of direction the magnetic force is


generally i cross k = -j
so the equation above becomes


This show that the direction is towards the south
Answer:
1. t = 0.0819s
2. W = 0.25N
3. n = 36
4. y(x , t)= Acos[172x + 2730t]
Explanation:
1) The given equation is

The relationship between velocity and propagation constant is

v = 15.87m/s
Time taken, 

t = 0.0819s
2)
The velocity of transverse wave is given by


mass of string is calculated thus
mg = 0.0125N

m = 0.00128kg


0.25N
3)
The propagation constant k is

hence

0.036 m
No of wavelengths, n is

n = 36
4)
The equation of wave travelling down the string is
![y(x, t)=Acos[kx -wt]\\\\becomes\\\\y(x , t)= Acos[(172 rad.m)x + (2730 rad.s)t]](https://tex.z-dn.net/?f=y%28x%2C%20t%29%3DAcos%5Bkx%20-wt%5D%5C%5C%5C%5Cbecomes%5C%5C%5C%5Cy%28x%20%2C%20t%29%3D%20Acos%5B%28172%20rad.m%29x%20%2B%20%282730%20rad.s%29t%5D)
![without, unit\\\\y(x , t)= Acos[172x + 2730t]](https://tex.z-dn.net/?f=without%2C%20unit%5C%5C%5C%5Cy%28x%20%2C%20t%29%3D%20Acos%5B172x%20%2B%202730t%5D)