The answer will be
(1) correct
(2) correct
(3) the force of the soccer ball on the net
(4) Will not change
Hope this help
Answer:
8.89 m/s² west
Explanation:
Assume east is +x. Given:
v₀ = 120 m/s
v = 0 m/s
t = 13.5 s
Find: a
v = at + v₀
0 m/s = a (13.5 s) + 120 m/s
a = -8.89 m/s²
a = 8.89 m/s² west
Answer:
The initial velocity of the snowball was 22.21 m/s
Explanation:
Since the collision is inelastic, only momentum is conserved. And since the snowball and the box move together after the collision, they have the same final velocity.
Let
be the mass of the ball, and
be its initial velocity; let
be the mass of the box, and
be its velocity; let
be the final velocity after the collision, then according to the law of conservation of momentum:
.
From this we solve for
, the initial velocity of the snowball:

now we plug in the numerical values
,
,
, and
to get:


The initial velocity of the snowball is 22.21 m/s.
<em>P.S: we did not take vectors into account because everything is moving in one direction—towards the west.</em>
By <span> It is directly proportional to the </span>average kinetic energy<span>.</span>
Answer:
Newton's third law of motion.
Explanation:
We are told the force needed to throw the full soda can was more than that needed to throw the empty can.
Now, the weight of the full soda can will be more than that of the empty can. Therefore, the full can will demand more force than that of the empty can due to Newton's third law of motion which states that to every action, there is an equal and opposite reaction.