1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lions [1.4K]
3 years ago
5

Usain bolt ran the world record 100m dash in 9.58 seconds, what is his average velocity for his run?

Physics
1 answer:
irina1246 [14]3 years ago
6 0

Answer:

Usain St. Leo Bolt, OJ, CD, OLY is a retired Jamaican sprinter, widely considered to be the greatest sprinter of all time. He is the world record holder in the 100 metres, 200 metres and 4 × 100 metres relay.

Explanation:

You might be interested in
In subduction, _____.
user100 [1]

The answer is the less dense plate slides over the denser plate.

4 0
3 years ago
PLEASE HELP ME 45 POINTS
sergij07 [2.7K]

Answer:

a) We kindly invite you to see the explanation and the image attached below.

b) The acceleration of the masses is 4.203 meters per square second.

c) The tension force in the cord is 28.02 newtons.

d) The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is 3.551 meters per second.

Explanation:

a) At first we assume that pulley and cord are both ideal, that is, masses are negligible and include the free body diagrams of each mass and the pulley in the image attached below.

b) Both masses are connected to each other by the same cord, the direction of acceleration will be dominated by the mass of greater mass (mass A) and both masses have the same magnitude of acceleration. By the 2nd Newton's Law, we create the following equation of equilibrium:

Mass A

\Sigma F = T - m_{A}\cdot g = -m_{A}\cdot a (1)

Mass B

\Sigma F = T - m_{B}\cdot g = m_{B}\cdot a (2)

Where:

T - Tension force in the cord, measured in newtons.

m_{A}, m_{B} - Masses of blocks A and B, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

a - Net acceleration of the each block, measured in meters per square second.

By subtracting (2) by (1), we get an expression for the acceleration of each mass:

m_{B}\cdot a +m_{A}\cdot a = T-m_{B}\cdot g -T + m_{A}\cdot g

(m_{B}+m_{A})\cdot a = (m_{A}-m_{B})\cdot g

a = \frac{m_{A}-m_{B}}{m_{B}+m_{A}} \cdot g

If we know that m_{A} = 5\,kg, m_{B} = 2\,kg and g = 9.807\,\frac{m}{s^{2}}, then the acceleration of the masses is:

a = \left(\frac{5\,kg-2\,kg}{5\,kg+2\,kg}\right) \cdot\left(9.807\,\frac{m}{s^{2}} \right)

a = 4.203\,\frac{m}{s^{2}}

The acceleration of the masses is 4.203 meters per square second.

c) From (2) we get the following expression for the tension force in the cord:

T = m_{B}\cdot (a+g)

If we know that m_{B} = 2\,kg, g = 9.807\,\frac{m}{s^{2}} and a = 4.203\,\frac{m}{s^{2}}, then the tension force in the cord:

T = (2\,kg)\cdot \left(4.203\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}}  \right)

T = 28.02\,N

The tension force in the cord is 28.02 newtons.

d) Given that system starts from rest and net acceleration is constant, we determine the time taken by the block to cover a distance of 1.5 meters through the following kinematic formula:

\Delta y  = \frac{1}{2}\cdot a\cdot t^{2} (3)

Where:

a - Net acceleration, measured in meters per square second.

t - Time, measured in seconds.

\Delta y - Covered distance, measured in meters.

If we know that a = 4.203\,\frac{m}{s^{2}} and \Delta y = 1.5\,m, then the time taken by the system is:

t = \sqrt{\frac{2\cdot \Delta y}{a} }

t = \sqrt{\frac{2\cdot (1.5\,m)}{4.203\,\frac{m}{s^{2}} } }

t \approx 0.845\,s

The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is calculated by the following formula:

v = a\cdot t (4)

Where v is the final speed of the system, measured in meters per second.

If we know that a = 4.203\,\frac{m}{s^{2}} and t \approx 0.845\,s, then the final speed of the system is:

v = \left(4.203\,\frac{m}{s^{2}} \right)\cdot (0.845\,s)

v = 3.551\,\frac{m}{s}

The final speed of the system is 3.551 meters per second.

8 0
3 years ago
A coin is dropped off of a building landing on its side. It hits with a pressure of 400/2 It hits with a force of 0.1 Calculate
Arte-miy333 [17]

Complete Question:

A coin is dropped off of a building landing on its side. It hits with a pressure of 400 N/m². It hits with a force of 0.1N. Calculate the area of the coin?

Answer:

Area = 0.00025 m²

Explanation:

Given the following data;

Pressure = 400N/m²

Force = 0.1N

To find the area of the coin;

Pressure = Force/area

Area = Force/pressure

Substituting into the equation, we have;

Area = 0.1/400

Area = 0.00025 m²

5 0
3 years ago
a moving billiard ball collides with an identical stationary billiard ball in an elastic collision. after the collision, the sec
MArishka [77]

A billiard ball collides with a stationary identical billiard ball to make it move. If the collision is perfectly elastic, the first ball comes to rest after collision.

<h3>Why does the first ball comes to rest after collision ?</h3>

Let m be the mass of the two identical balls.  

u1 = velocity before the collision of ball 1

u2 = 0 = velocity of second ball that is at rest

v1 and v2 are the velocities of the balls after the collision.

From the conservation of momentum,

∴ mu1 + mu2 = mv1 + mv2

∴ mu1 = mv1 + mv2

∴ u1 = v1 + v2

In an elastic collision, the kinetic energy of the system before and after collision remains same.

\frac{1}{2}  mu_1^2+0=\frac{1}{2}  mv_1^2+\frac{1}{2}  mv_2^2

∴  \frac{1}{2}  m(v_1+v_2 )^2=\frac{1}{2} mv_1^2+\frac{1}{2}mv_2^2

∴ \frac{1}{2} mv_1^2+\frac{1}{2} mv_2^2+mv_1 v_2=\frac{1}{2}  mv_1^2+\frac{1}{2} mv_2^2

∴ mv₁v₂ = 0

  1. It is impossible for the mass to be zero.
  2. Because the second ball moves, velocity v2 cannot be zero.
  3. As a result, the velocity of the first ball, v1, is zero, indicating that it comes to rest after collision.
<h3>What is collision ?</h3>

An elastic collision is a collision between two bodies in which the total kinetic energy of the two bodies remains constant. There is no net transfer of kinetic energy into other forms such as heat, noise, or potential energy in an ideal, fully elastic collision.

Can learn more about elastic collision from brainly.com/question/12644900

#SPJ4

3 0
2 years ago
Need help asap pls
Zinaida [17]
B. third

for every action there is a reaction*
6 0
2 years ago
Other questions:
  • How Many Days Would a Scientist Have To Wait For The Radioactivity To Be 12.5 The Starting Amount
    13·2 answers
  • Thermopane window is constructed, using two layers of glass 4.0 mm thick, separated by an air space of 5.0 mm.
    15·1 answer
  • If I drop a watermelon from the top of one of the tower dorms at CSU, and it takes 3.34 seconds to hit the ground, calculate how
    9·1 answer
  • A sonic boom is caused by _____. a sound-producing object moving toward an observer a sound-producing object overtaking its own
    9·2 answers
  • A proton is accelerated from rest through a potential difference of 2.5 kV and then moves perpendicularly through a uniform 0.60
    14·2 answers
  • A bat hits a ball; which has the greater acceleration, the bat or the ball?
    14·2 answers
  • A softball has a (positive/negative) acceleration when it is thrown. A soft ball has a (positive/negative) acceleration when it
    15·1 answer
  • An object is thrown with a horizontal velocity of 49.0 mt/sec and a vertical velocity 18.8 mt/sec. How long with the object take
    11·2 answers
  • A 10 gram ball is rolling at 3 m/s. What is the energy the ball has?
    11·1 answer
  • Write short letters.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!