Answer:
The 99% confidence interval for the population mean reduction in anxiety was (1.2, 8.6).
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 27 - 1 = 26
99% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 26 degrees of freedom(y-axis) and a confidence level of . So we have T = 2.7787.
The margin of error is:
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 4.9 - 3.7 = 1.2.
The upper end of the interval is the sample mean added to M. So it is 4.9 + 3.7 = 8.6.
The 99% confidence interval for the population mean reduction in anxiety was (1.2, 8.6).
Step 1
find the perimeter of a <span>single enclosure
perimeter of a square=4*b
where b is the long side of a square
area square=b</span>²
area square=2025 ft²
b²=2025-------> b=√2025-----> b=45 ft
<span>so
perimeter=4*45-------> 180 ft
step 2
</span>find the perimeter of a two individual enclosure
<span>perimeter=4*20+3*40------> 200 ft
area=20*40*2------> 1600 ft</span>²
<span>
therefore
fencing singular enclosure < fencing two individual enclosure
180 ft < 200 ft
</span>area singular enclosure > area two individual enclosure
2025 ft² > 1600 ft²<span>
the answer is the option
</span><span>a The singular enclosure would minimize cost because it requires 180 feet of fencing.</span><span>
</span>
Answer:
Step-by-step explanation:
Answer:
Then it is just a matter of plugging in the values into the formula. For example, if one base is 6 cm long, the other is 10 cm long and the height is 4 cm, the area is then (6 + 10) / 2 x 4 = 16 / 2 x 4 = 8 x 4 = 32 cm 2 (32 square centimeters).
Step-by-step explanation: