To find the number of even factors, we can multiply the number of odd factors by the power of 2 (not the power of 2 + 1!!!). For 540, we have (3 + 1)(1 + 1)(2) = 16 even factors.
Answer:
Hi, there the answer is C. y=33/2x+425
I tried uploading a picture on how I got, but it keep saying I'm using offensive word, which I didn't but trust me the answer is right
Step-by-step explanation:
Answer:
<em><u>A.10000</u></em>
<em><u>B.25 more trees must be planted</u></em>
Step-by-step explanation:
⇒Given:
- The intial average yield per acre
= 150
- The initial number of trees per acre
= 100
- For each additional tree over 100, the average yield per tree decreases by 1 i.e , if the number trees become 101 , the avg yield becomes 149.
- Total yield = (number of trees per acre)
(average yield per acre)
<em>A.</em>
⇒If the total trees per acre is doubled , which means :
total number of trees per acre
=
= 200
the yield will decrease by :
- 

⇒total yield = 
<em>B.</em>
⇒to maximize the yield ,
let's take the number of trees per acre to be 100+y ;
and thus the average yield per acre = 150 - y;
total yield = 
this is a quadratic equation. this can be rewritten as ,
⇒ 
In this equation , the total yield becomes maximum when y=25;
<u><em>⇒Thus the total number of trees per acre = 100+25 =125;</em></u>
If he goes there 4 times a week then $8 plus $2 equals $10 and times $10 by 4 times a week equals $40
So Elijah spends $40 a week at the restaurant