1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
borishaifa [10]
3 years ago
11

How many distinct arrangements can you make using the letters in the word experiment

Mathematics
1 answer:
Ratling [72]3 years ago
8 0
E x p e r i m e n t

Total number of letters = 10

Repeated letters =   3 e

Total arrangement from the 10 letters = 10!

Because of the repeated letters =    10! / 3!

                                                       = (10 × 9 × 8 × 7× 6 × 5 × 4 × 3!) / 3!

                                                       = 10 × 9 × 8 × 7× 6 × 5 × 4

                                                       = 604800  

604800 distinct arrangements.
You might be interested in
What is the value of x 5,2.5,7.5,10
Norma-Jean [14]
This question is referred to two similar triangles.

One triangle has sides x and x - 2.

The other triangle has the respective sides x + x + 5 and x - 2 + x + 1

Then you can state a proportionality relation between the sides>

[x + x + 5] / x = [x - 2 + x + 1] / [x - 2]

=> [2x + 5] / x = [2x - 1] / [x - 2]

=> (2x + 5)(x - 2) = (2x - 1)x

=> 2x^2 - 4x + 5x - 10 = 2x^2 - x

=> x - 10 = - x

=> 2x = 10

=> x = 10 / 2

=> x = 5

Answer: x = 5
3 0
3 years ago
Read 2 more answers
The corresponding sides of two similar rectangles are 14 ft and 8 ft. The area of the smaller rectangle is 57 ft2. To the neares
Elina [12.6K]
C 100 ft2  need more characters sorry ashdashdasisncsijdhcfniuslfnxcm
8 0
3 years ago
Read 2 more answers
What is the absolute value how do you do this problem?<br> f(x)=|-4-3|
Rainbow [258]
You subtract normally inside the absolute value (the two bars):
-4-3 is -7
Since the negative is INSIDE the absolute, the answer will turn to a positive. Think of the bars as a jail cell for the negatives. Once the negatives are in there, only positive numbers will come out. So your answer is 7.
5 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
4 years ago
Read 2 more answers
Carl went to the toy store with a total of $17.25. He wanted to buy
AlekseyPX
The answer to the question is 9
6 0
3 years ago
Read 2 more answers
Other questions:
  • Solve 3x+1=3 thanks
    7·2 answers
  • Why is an elephant big gray and wrinkled
    13·1 answer
  • What is the edge length of a face-centered cubic unit cell made up of atoms having a radius of 125 pm?
    9·1 answer
  • A robot’s height is 1 meter 20 centimeters. How tall is the robot in millimeters?
    8·1 answer
  • Find the midpoint of AB A.(-2,-3) B.(16,4) C.(-2,-11) D.(4,-10)
    8·1 answer
  • Find the surface area of a cylinder with a diameter of 8<br> yards and a height of 9 yards.
    15·1 answer
  • Calculate the measure of segment KL<br><br><br> HELP PLS
    15·1 answer
  • In right triangle ABC, mZC=90 , and sin A = 3/5, what is the value of cos B?
    15·1 answer
  • List the terms in the expression xyz+1
    14·1 answer
  • John has $175 in $5 and $10 bills in his drawer. The number of
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!