Answer:
65625/4(x^5)(y²)
Step-by-step explanation:
Using binomial expansion
Formula: (n k) (a^k)(b ^(n-k))
Where (n k) represents n combination of k (nCk)
From the question k = 5 (i.e. 5th term)
n = 7 (power of expression)
a = 5x
b = -y/2
....................
Solving nCk
n = 7
k = 5
nCk = 7C5
= 7!/(5!2!) ------ Expand Expression
=7 * 6 * 5! /(5! * 2*1)
= 7*6/2
= 21 ------
.........................
Solving (a^k) (b^(n-k))
a = 5x
b = -y/2
k = 5
n = 7
Substituting these values in the expression
(5x)^5 * (-y/2)^(7-5)
= (3125x^5) * (-y/2)²
= 3125x^5 * y²/4
= (3125x^5)(y²)/4
------------------------------------
Multiplying the two expression above
21 * (3125x^5)(y²)/4
= 65625/4(x^5)(y²)
Answer:
I believe the answer is 1/5 please tell me if I am wrong and I am truly sorry if I am
Step-by-step explanation:
Question: If the subspace of all solutions of
Ax = 0
has a basis consisting of vectors and if A is a matrix, what is the rank of A.
Note: The rank of A can only be determined if the dimension of the matrix A is given, and the number of vectors is known. Here in this question, neither the dimension, nor the number of vectors is given.
Assume: The number of vectors is 3, and the dimension is 5 × 8.
Answer:
The rank of the matrix A is 5.
Step-by-step explanation:
In the standard basis of the linear transformation:
f : R^8 → R^5, x↦Ax
the matrix A is a representation.
and the dimension of kernel of A, written as dim(kerA) is 3.
By the rank-nullity theorem, rank of matrix A is equal to the subtraction of the dimension of the kernel of A from the dimension of R^8.
That is:
rank(A) = dim(R^8) - dim(kerA)
= 8 - 3
= 5
When two quantities have a relationship, there is a corresponding equation that could describe it. These two quantities may be expressed in variables of x and y. When you plot the graph, you may see a line or a curve. This presents the trend of the relationship of the two quantities when the independent variable changes.
Answer:
I believe this is the correct answer. e = 16