The molar concentration of a solution, usually expressed as the number of moles of solute per liter of solution.
Williamson synthesis is the most common way for obtaining ethers, called after its developer Alexander Williamson. It is an organic reaction of forming ethers from an organohalide and an alkoxide. The reaction is carried out according to the SN2 mechanism.
On the attached picture it is shown required alkoxide ion, <span>alkyl(aryl)bromide and the ether that forms from the reactants. </span>
Answer:
The reaction is not spontaneous in the forward direction, but in the reverse direction.
Explanation:
<u>Step 1: </u>Data given
H2(g) + I2(g) ⇌ 2HI(g) ΔG° = 2.60 kJ/mol
Temperature = 25°C = 25+273 = 298 Kelvin
The initial pressures are:
pH2 = 3.10 atm
pI2 = 1.5 atm
pHI 1.75 atm
<u>Step 2</u>: Calculate ΔG
ΔG = ΔG° + RTln Q
with ΔG° = 2.60 kJ/mol
with R = 8.3145 J/K*mol
with T = 298 Kelvin
Q = the reaction quotient → has the same expression as equilibrium constant → in this case Kp = [p(HI)]²/ [p(H2)] [p(I2)]
with pH2 = 3.10 atm
pI2 = 1.5 atm
pHI 1.75 atm
Q = (3.10²)/(1.5*1.75)
Q = 3.661
ΔG = ΔG° + RTln Q
ΔG = 2600 J/mol + 8.3145 J/K*mol * 298 K * ln(3.661)
ΔG =5815.43 J/mol = 5.815 kJ/mol
To be spontaneous, ΔG should be <0.
ΔG >>0 so the reaction is not spontaneous in the forward direction, but in the reverse direction.
Explanation:
Ions form when atoms gain or lose electrons. This is so that they form a full outer shell of electrons. When an atom gains electrons it becomes a negative ion, because electrons are negatively charged. For example, all halogens (group 7 or 17) form negative ions as they gain an electron forming a 1- charge. When an atom loses electrons it becomes a positive ion, as it is losing some negative charge from the electrons. This would be for example, alkali metals (group 1) which lose an electron to form a positive ion with a 1+ charge, (ALL metals form positive ions).
Answer: The Kelvin scale is related to the Celsius scale. The difference between the freezing and boiling points of water is 100 degrees in each, so that the kelvin has the same magnitude as the degree Celsius.
Explanation:
Celsius is, or relates to, the Celsius temperature scale (previously known as the centigrade scale). The degree Celsius (symbol: °C) can refer to a specific temperature on the Celsius scale as well as serve as a unit increment to indicate a temperature interval(a difference between two temperatures or an uncertainty). “Celsius” is named after the Swedish astronomer Anders Celsius (1701-1744), who developed a similar temperature scale two years before his death.
K = °C + 273.15
°C = K − 273.15
Until 1954, 0 °C on the Celsius scale was defined as the melting point of ice and 100 °C was defined as the boiling point of water under a pressure of one standard atmosphere; this close equivalence is taught in schools today. However, the unit “degree Celsius” and the Celsius scale are currently, by international agreement, defined by two different points: absolute zero, and the triple point of specially prepared water. This definition also precisely relates the Celsius scale to the Kelvin scale, which is the SI base unit of temperature (symbol: K). Absolute zero—the temperature at which nothing could be colder and no heat energy remains in a substance—is defined as being precisely 0 K and −273.15 °C. The triple point of water is defined as being precisely 273.16 K and 0.01 °C.