Answer: 250 ml of stock solution with molarity of 12.0 M is measured using a pipette and 250 ml of water is added to volumetric flask of 500 ml to make the final volume of 500 ml.
Explanation:
According to the dilution law,

where,
= concentration of stock solution = 12.0 M
= volume of stock solution = ?
= concentration of diluted solution= 6.00 M
= volume of diluted acid solution = 500 ml
Putting in the values we get:


Thus 250 ml of stock solution with molarity of 12.0 M is measured using a pipette and 250 ml of water is added to volumetric flask of 500 ml to make the final volume of 500 ml.
Answer:
Ratio is 3:2
3CO = 2Fe or 1.5 CO = 1 Fe
Explanation:
Fe2O3 + 3CO = 2Fe + 3CO2
Fe2O3 = Iron (|||) oxide
CO = Carbon monoxide
Fe = Solid Iron
CO2 = Carbon dioxide
Excellent is already balanced.
10 Moles Fe and 15 Moles of CO2
5 Moles Fe2O3 + 15 Moles 3CO = 10 Moles Fe + 15 Moles 3CO2
What is the ratio of carbon monoxide to solid iron
Ratio is 3:2 or 1.5 CO = 1 Fe
Answer:
a reactant is a substance that is at the beginning of a Chemical reaction while a product is a substance that is present at the end of a chemical reaction.in other words a reactant is a substance used up in a chemical reaction to produce something while a reactant is what is produced after a chemical reaction.
I hope this helps
Answer:
An atom gets larger as the number of electronic shells increase; therefore the radius of atoms increases as you go down a certain group in the periodic table of elements. In general, the size of an atom will decrease as you move from left to the right of a certain period.
Explanation:
It will most likely get flooded at one point in time.