Answer:
- In general, polar solutes are most soluble in highly polar solvents.
Explanation:
The general rule is "like dissolves like" which means that <em>polar solvents </em>dissolve polar (or ionic) <em>solutes</em> and <em>non-polar solvents</em> dissolve non-polar solutes.
In order for a solvent dissolve a solute, the strength of the interacttion (force) between the solute and the solvent units (atoms, molecules, or ions) must be stronger than the strength of the forces that keep together he particles of the pure substances (known as intermolecular forces).
Since the nature of the interactions between the units are electrostatic, the more polar is the solvent the better it will be able to attract and surround the solute particles, keeping them separated and in solution. That mechanism explains why polar solutes will be most soluble in highly polar solvents.
Answer:
8.194 Mev per nucleon
Explanation:
Mass of Barium = 135.905 amu
number of proton = 56, number of neutron = 80
Md = (Mp + Mn) - Mb Mp is the mass of proton, Mn is the mass of neutron, Mb is the mass of barium and Md is the mass defect
Mn = 1.00867 amu Mp = 1.00728 amu
Md = ( 56 ( 1.00728) + 80 ( 1.00867) = 137.1013 - 135.905 =1.1963 amu
Md = 1.1963 × 1 ÷ ( 6.02214 × 10 ²⁶ amu ) = 1.9865 × 10 ⁻²⁷ kg
Energy = mc² = 1.9865 × 10 ⁻²⁷ kg × (2.99792 × 10 ⁸ m/s)²
E= 1.78537 × 10⁻¹⁰ J
to convert to Mev
1.78537 × 10⁻¹⁰ × 6241457006000 = 1114.33 Mev
binding energy per nucleon = 1114.33 / 136 =8.194 Mev per nucleon
Answer:
-10 m/s2
Explanation:
The acceleration is taken as −10 m/s2
This temperature is equivalent to 98.6 degrees Fahrenheit
Answer:
Conditions to Avoid: Natural gas is extremely flammable and explosive; avoid heat, sparks, open flames, and all possible sources of ignition. Heat will increase pressure in containers used to store natural gas.Jun 1, 2015