Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.
H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)
C = 545.8 J/kg</span>·°C
Answer:
The correct statement is:
E - The entropy of the products is greater than the entropy of the reactants.
Explanation:
C₆H₁₂O₆ + 6 O₂ → 6 CO₂ + 6 H₂O
As glucose is a large molecule and then it is transformed into many molecules of water and carbon dioxide, the entropy of the system increases. If the number of molecules increases, the disorder increases.
Initial state: 7 molecules (1 glucose + 6 oxygen)
Final state: 12 molecules (6 carbon dioxide + 6 water)
Answer: Option (D) 30N
Detailed Solution:
According to Newton's second law:
F = ma --- (A)
Given:
mass = 5kg
acceleration = 6 m/s^2
F = ?
Plug all the value in equation (A)
F = (5)(6)
Ans: F = 30N
1. carbon lies in the 2nd period where silicon in the third period.
2. carbon is a non metal whereas silicon is a metalloid.
3. there are only 3 isotopes of carbon and 23 isotopes of silicon
4. size of silicon atom is larger
5. silicon is heavier than carbon.