Answer:
2HNO3 +Na2CO3 → CO2 + H2O + 2NaNO3
Answer:

Explanation:
Temperature and thermal energy are in a direct proportion which means that if temperature of a substance increases, its thermal energy also increases and vice versa.
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
FLOOR. Most of the molecules that dont sick to something fall on the floor so most would be on the FLOOR.
Answer:
Distribution coefficient: 4.79
Explanation:
Distribution coefficient is the ratio between equilibrium concentration of non-aqueous phase and aqueous phase where both solvents are inmiscible. The equation for the problem is:
Distribution coefficient: Concentration in chloroform / Concentration in Water
<em>Concentration in water: 2.59mg / 30mL = 0.08633mg/mL</em>
<em>Concentration in chloroform: (15mg-2.59mg) / 30mL = 0.4137mg/mL</em>
<em />
Distribution coefficient: 0.4137mg/mL / 0.08633mg/mL
<h3>Distribution coefficient: 4.79</h3>
Sucrose and other simple sugars may dissolve in water because they are polar molecules with an unequal charge distribution. Water is also quite polar, capable of forming weak, temporary connections with other polar compounds.
Salt dissolves into ions, with Na being positively charged and CL being negatively charged. Because water is highly polar (parts of the molecule are negatively charged while others are positively charged), the sodium ions are surrounded by water molecules, with the negatively charged component of the water molecules surrounding the NA ion. The Cl ion experiences the inverse effect.
<h3>
How does salt dissolve in water compared to sugar?</h3>
A solution's solute and solvent are two different types of substances that can dissolve one another. Different solvents have different levels of solubility for different solutes. For instance, sugar is far more soluble in water than salt. Even sugar, though, has a limit on how much may dissolve.
learn more about solubility refer:
brainly.com/question/23946616
#SPJ4