Answer: This is from a wiki i found. Approximately one third of a cell’s proteins are destined to function outside the cell’s boundaries or while embedded within cellular membranes. Ensuring these proteins reach their diverse final destinations with temporal and spatial accuracy is essential for cellular physiology. In eukaryotes, a set of interconnected organelles form the secretory pathway, which encompasses the terrain that these proteins must navigate on their journey from their site of synthesis on the ribosome to their final destinations. Traffic of proteins within the secretory pathway is directed by cargo-bearing vesicles that transport proteins from one compartment to another. Key steps in vesicle-mediated trafficking include recruitment of specific cargo proteins, which must collect locally where a vesicle forms, and release of an appropriate cargo-containing vessel from the donor organelle (Figure 1). The newly formed vesicle can passively diffuse across the cytoplasm, or can catch a ride on the cytoskeleton to travel directionally. Once the vesicle arrives at its precise destination, the membrane of the carrier merges with the destination membrane to deliver its cargo. Have a nice day.
Explanation: Plz make brainliest
Answer:
greece
Explanation:
aristole was particularly from stagria, greece. but most early philosophers are from greece
Answer:
0.0000098 should be the answer
Explanation:
Determining the identity of substances is a critical part of chemistry because once the substance's identity is known, we can predict its behavior and understand the scenarios that it is involved in better.
For example, consider an industrial pipe where fouling (scaling) is occurring. If the compounds present in the scales are identified, steps may be taken to prevent and remove the scaling. This is one of many examples where identifying chemical substances is of high importance.
The softest mineral in the Mohs Hardness Scale is talc.
Talc is often used in baby powder and corn starch, among other things. Talc cleaves into thin sheets, and it is held together only by van de Waals bonds, which allows these sheets to slip past each other. This gives the mineral its softness and it is often valued as a high-temperature lubricant.