By Euler's method the <em>numerical approximate</em> solution of the <em>definite</em> integral is 4.189 648.
<h3>How to estimate a definite integral by numerical methods</h3>
In this problem we must make use of Euler's method to estimate the upper bound of a <em>definite</em> integral. Euler's method is a <em>multi-step</em> method, related to Runge-Kutta methods, used to estimate <em>integral</em> values numerically. By integral theorems of calculus we know that definite integrals are defined as follows:
∫ f(x) dx = F(b) - F(a) (1)
The steps of Euler's method are summarized below:
- Define the function seen in the statement by the label f(x₀, y₀).
- Determine the different variables by the following formulas:
xₙ₊₁ = xₙ + (n + 1) · Δx (2)
yₙ₊₁ = yₙ + Δx · f(xₙ, yₙ) (3) - Find the integral.
The table for x, f(xₙ, yₙ) and y is shown in the image attached below. By direct subtraction we find that the <em>numerical</em> approximation of the <em>definite</em> integral is:
y(4) ≈ 4.189 648 - 0
y(4) ≈ 4.189 648
By Euler's method the <em>numerical approximate</em> solution of the <em>definite</em> integral is 4.189 648.
To learn more on Euler's method: brainly.com/question/16807646
#SPJ1
For twelve jerseys it would be $210
Answer:
6(5)+(2)5
Step-by-step explanation:
A = 5 + B
A + 5 = 2B
Let's get one of the variables on one side.
A = 5 + B
A = 2B - 5
By the transitive property
5 + B = 2B - 5
Solve for B.
5 = B - 5
10 = B
Use 10 = B in an earlier equation to find A.
A = 5 + B
A = 5 + 10
A = 15
Abe has 15$ and Ben has 10$.
Answer: 7/6
Step-by-step explanation:
If he is writing sixths, then we have multiples of 1/6.
this is:
0*(1/6) = 0
1*(1/6) = 1/6
.
.
.
5*(1/6) = 5/6 (the numer he wrote at the left of 1)
6*(1/6) = 6/6 = 1
7*(1/6) = 7/6
So the number next to 1, (at the right of 1) must be 7/6.
You also can find it by adding 1/6 to 1.
1/6 + 1 = 1/6 + 6/6 = 7/6.