1) Draw the coordinate plane
2) Draw the line y = - 2
It is a line parallel to the y axis, two units below the origin
3) The solution (graph of the inequality y < - 2) is all the area below the line y = - 2.
Answer:
1 / 2
Step-by-step explanation:
- First observe that the fate of the last person is determined the moment either the first or the last seat is selected! This is because the last person will either get the first seat or the last seat. Any other seat will necessarily be taken by the time the last guy gets to 'choose'.
- Since at each choice step, the first or last is equally probable to be taken, the last person will get either the first or last with equal probability: 1/2
- Armed with the key observation, we see that the event that the last person's correct seat is free, is exactly the same as the event that the first person's seat was taken before the last person's seat.
- Well, each person had to make a random choice, was equally likely to choose the first person's seat or the last person's seat - the random chooser exhibits absolutely no preference towards a particular seat. This means that the probability that one seat is taken before the other must be 1/2
Answer:
132%
Step-by-step explanation:
The population of Peru = 10904
The population of Franklin = 25248.
Difference = 25248-10904=14,344
Expressing as a percentage of the population of Peru

=132%
Therefore, the population of Franklin is 132% more than the population of Peru.
Check the picture below.
since the diameter of the cone is 6", then its radius is half that or 3", so getting the volume of only the cone, not the top.
1)
![\bf \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=3\\ h=4 \end{cases}\implies V=\cfrac{\pi (3)^2(4)}{3}\implies V=12\pi \implies V\approx 37.7](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D3%5C%5C%20h%3D4%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B%5Cpi%20%283%29%5E2%284%29%7D%7B3%7D%5Cimplies%20V%3D12%5Cpi%20%5Cimplies%20V%5Capprox%2037.7)
2)
now, the top of it, as you notice in the picture, is a semicircle, whose radius is the same as the cone's, 3.
![\bf \textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=3 \end{cases}\implies V=\cfrac{4\pi (3)^3}{3}\implies V=36\pi \\\\\\ \stackrel{\textit{half of that for a semisphere}}{V=18\pi }\implies V\approx 56.55](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20sphere%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D3%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B4%5Cpi%20%283%29%5E3%7D%7B3%7D%5Cimplies%20V%3D36%5Cpi%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bhalf%20of%20that%20for%20a%20semisphere%7D%7D%7BV%3D18%5Cpi%20%7D%5Cimplies%20V%5Capprox%2056.55)
3)
well, you'll be serving the cone and top combined, 12π + 18π = 30π or about 94.25 in³.
4)
pretty much the same thing, we get the volume of the cone and its top, add them up.

AB∥CD and m∠4=85°.
so
<1 = 180° - 85°
<1 = 95°
Because AB∥CD so <5 = <1 = 95° (corresponding angles are equal)
Answer
<5 = 95°