Answer:
The answer to your question is 88.7 ml
Explanation:
Data
Volume = ?
Concentration of NaOH = 0.142 M
Volume of H₂C₄H₄O₆ = 21.4 ml
Concentration of H₂C₄H₄O₆ = 0.294 M
Balanced chemical reaction
2 NaOH + H₂C₄H₄O₆ ⇒ Na₂C₄H₄O₆ + 2H₂O
1.- Calculate the moles of H₂C₄H₄O₆
Molarity = moles/volume
Solve for moles
moles = Molarity x volume
Substitution
moles = 0.294 x 21.4/1000
Result
moles = 0.0063
2.- Use proportions to calculate the moles of NaOH
2 moles of NaOH ------------------ 1 moles of H₂C₄H₄O₆
x ------------------ 0.0063 moles
x = (0.0063 x 2) / 1
x = 0.0126 moles of NaOH
3.- Calculate the volume of NaOH
Molarity = moles / volume
Solve for volume
Volume = moles/Molarity
Substitution
Volume = 0.0126/0.142
Result
Volume = 0.088 L or 88.7 ml
Answer:
This is very easy Cuz We have 2Na2O We have O2 so thats molecule of Oxygen and its same on product We need to balance Na on start We have 1 on product We have 2 so Just put 2 at start....
Explanation:
Sorry for bad english not my first language :(
2Na+O2-->2Na20
<u>Answer:</u> The unbalanced chemical equation is written below.
<u>Explanation:</u>
Unbalanced chemical equation does not follow law of conservation of mass.
In an unbalanced chemical equation, total number of individual atoms on the reactant side will not be equal to the total number of individual atoms on the product side.
The chemical equation for the reaction of diboron trioxide and magnesium metal follows:

Hence, the unbalanced chemical equation is written above.
Answer:
c tarnishes in air
Explanation:
After silver has been exposed to air that contains sulphur gases, discoloration would occur. there would be darkening that is caused by the reaction with gases.When any silver object tarnishes, it brings about a disfiguring of that object. Hydrogen sulphide would be needed for this to happen. silver sulphide is black and a if a thin layer should form on any surface, it ill darken it. This is what we refer to as tarnishing.
The increase in the boiling point of a solvent is a colligative property.
That means that the increase in the boling point will be related to the number of particles (molecules or ions) present in the solution.
The higher the number of particles (molecules or ions) the higher the increase in the boiling point.
All the aqueous solutions presented are electrolytes, i.e. the solutes are ionic compounds.
Then, you have to compare the number of ions that you have in each solution.
A) 1.0 M KCl ---> 1.0 M K+ + 1.0 MCl- = 2 moles of particles / liter
B) 1.0 M CaCl2 --> 1.0M Ca(2+) + 1.0M * 2 Cl (-) = 3 moles of particle / liter
C) 2.0M KCl ---> 2.0 M K+ + 2.0 M Cl- = 4 moles of particle / liter
D) 2.0 M CaCl2 ----> 2.0 M Ca (2+) + 2.0M * 2 Cl (-) = 6 moles of particle / liter.
Then, the solution 2.0M CaCl2(aq) has the highest increase in the boiling point.
Answer: option D) 2.0 M Ca Cl2(aq)