Answer:
the drops of liquid are coming from the decreases. they are formed as the motion of the water particles in the air gas. this change in motion cause air in the air to change from a liquid to a water
Answer:
Concentration AgBr at saturation = 7.07 x 10⁻⁷M
Explanation:
Given AgBr(s) => Ag⁺(aq) + Br⁻(aq) ; Ksp = 5 x 10⁻¹³ = [Ag⁺][Br⁻]
I --- 0 0
C --- +x +x
E --- x x
[Ag⁺][Br⁻] = (x)(x) = x² = 5 x 10⁻¹³ => x = SqrRt(5 x 10⁻¹³) = 7.07 x 10⁻⁷M
Aqueous solutions of barium nitrate and potassium phosphate are mixed.
What is the precipitate and how many molecules are formed?
Barium nitrate has a chemical symbol of Ba(NO3)2 and potassium phosphate
has a chemical symbol K2PO4. The reaction between these two is a double
replacement reaction yielding barium phosphate and potassium nitrate.
The chemical equation representing the reaction is,
Ba(NO3)2 + K2PO4 à KNO3 +
BaPO4
Answer:
Thus, the order of the reaction is 2.
The rate constant of the graph which is :- 2.00 M⁻¹s⁻¹
Explanation:
The kinetics of a reaction can be known graphically by plotting the concentration vs time experimental data on a sheet of graph.
The concentration vs time graph of zero order reactions is linear with negative slope.
The concentration vs time graph for a first order reactions is a exponential curve. For first order kinetics the graph between the natural logarithm of the concentration vs time comes out to be a straight graph with negative slope.
The concentration vs time graph for a second order reaction is a hyberbolic curve. Also, for second order kinetics the graph between the reciprocal of the concentration vs time comes out to be a straight graph with positive slope.
Considering the question,
A plot of 1/[NOBr] vs time give a straight line with a slope of 2.00 M⁻¹s⁻¹.
<u>Thus, the order of the reaction is 2.</u>
<u>Also, slope is the rate constant of the graph which is :- 2.00 M⁻¹s⁻¹</u>