Answer:
B = 0.8 T
Explanation:
It is given that,
Radius of circular loop, r = 0.75 m
Current in the loop, I = 3 A
The loop may be rotated about an axis that passes through the center and lies in the plane of the loop.
When the orientation of the normal to the loop with respect to the direction of the magnetic field is 25°, the torque on the coil is 1.8 Nm.
We need to find the magnitude of the uniform magnetic field exerting this torque on the loop. Torque acting on the loop is given by :

B is magnetic field

So, the magnitude of the uniform magnetic field exerting this torque on the loop is 0.8 T.
Answer:
Gallium
Explanation:
Gallium is one such element used as a do/pant in a p-type semiconductor.
A do/pant is an impurity added to a semi-conductor used to alter its properties. Semi-conductors have a wide range of applications. They will conduct heat and electricity only under certain conditions. This property is highly desirable and find a wide application in electronics.
For p-type conductors, they are best do/ped with elements with 3 valence electrons. These are group 3 elements. From the choices, only gallium belongs to this group.
Other elements given are good do/pants for n-type semiconductors. They have 5 valence electrons.
Answer:
The answer should be C. slanted upward to the right.
Hope this helps. :-)
To finish one orbit it will take 98 x 60 seconds. So; <span>(2 x pi)/(98 x 60) = 1.07 x 10^-3 rad/sec. </span><span>
</span>