Answer:
A chemical formula for a molecular compound represents the composition of <u><em>a molecule.</em></u>
Explanation:
Chemical formulas are alphanumeric expressions that are used to indicate the composition of chemical substances. They consist of chemical symbols that indicate the elements that form a compound; The number of atoms provided by each element is also indicated by the use of a subscript, that is, a small number that is placed below and to the right of each element that so requires. When an element does not have a subscript, it is understood that there is only one atom of it in the substance.
Each molecule corresponds to a chemical formula, as well as a name according to the rules of the chemical nomenclature.
Then, <u><em>a chemical formula for a molecular compound represents the composition of a molecule.</em></u>
Answer:
It would decrease
Explanation:
As temperature decreases the particles in the gas have less kinetic energy and therefore have less energy to overcome the bonds that hold them together and slowly move closer. Furthermore, increased pressure forces them to move closer to each other, decreasing the volume
Answer:
Glucose will move from the solution B to the solution A
Explanation:
Given that:
Solution A contains 1% glucose, and,
Solution B contains 5% glucose
Diffusion is the net movement of the substance from the region of the higher concentration to the region of the lower concentration.
Thus, solution B contains more concentration of glucose as compared to solution A. <u>By the process of diffusion, the particle moves from higher concentration to lower concentration and thus, glucose will move from solution B to solution A.</u>
The average kinetic energy of an ideal gas is calculated as
KE_avg = 3/2 kT
where T is the temperature in Kelvin and k=R/N_A; R is the universal gas constant and N_A is the number of moles.
Thus, upon substitution we get
KE_avg = 3/2(8.314/1)(100+273)
KE_avg = 3/2(8.314)(373)
KE_avg = 4651.683
The average kinetic energy of 1 mole of a gas at 100 degree Celsius is 4651.683 J.
Yes the ANSWER is Correct-
On first half life the mass will be 10 gram
On second half life the mass will be 5 gram
On third half life the mass will be 2.5 gram