Answer:
-2
Explanation:
Gibbs free energy is defined by enthalpy of the system minus the product of the temperature and entropy and represented by the formula below:
G = H - TS where G = Gibbs free energy, H = enthalpy and T = temperature and S = entropy
change in entropy is defined by the formula below
ΔG = ΔH - Δ(TS) if the temperature is not constant, but if the temperature is constant then
ΔG = ΔH - TΔS
in according to the question (TS) is treated together.
to the solution
increase in H = 10 units , increase in the product of temperature and entropy = 12 units
ΔG = 10 - 12 = -2
Cr2(SO4)3(aq) + 3(NH4)2CO3(aq) → 3(NH4)2SO4(aq) + Cr2(CO3)3(s)
<span>Ionic: 2Cr+3 + 3SO4^-2 + 6NH4+ + 3CO3^-2 ----> 6NH4+ + 3SO4^-2 + Cr2(CO3)3 (spectator ions are NH4+, SO4^-2) </span>
<span>Net Ionic: 2Cr^+3(aq) + 3CO3^-2(aq) -------> Cr2(CO3)3(s) </span>
Answer:
One gallon of octane produces approximately 7000 L of carbon dioxide.
Note:
I believe that the mass of octane should have been given as 2661 g. However, I understand that your instructor probably gave you this problem, so I will use 4000 g for the approximate mass of one gallon of octane. You can rework the problem on your own, substituting the correct masses of octane if you wish.
Step1. You must first determine the number of moles that are in 4000 g of octane, using the molar mass of octane. Step 2. Then you must determine the number of moles of carbon dioxide that can be produced by that number of moles of octane, based on the mole ratio between octane and carbon dioxide in the balanced equation. Step 3. Then use the ideal gas law to determine the volume in liters of carbon dioxide that can be formed.
Unfortunately you did not specify the electronic configuration in the question, however since one of the answers must be a halogen, i took the liberty to attach an image with the configuration (both the simple numeric and spdf form) for all the halogen and all you have to do is match the electronic configuration you have in your question to the one in the table attached and you can then deduce the answer.
Hope this helps.
The total number of atoms in 7.10g of chlorine is 1.204 × 10²³atoms.
HOW TO CALCULATE NUMBER OF ATOMS:
- The number of atoms in a substance can be calculated by multiplying the number of moles in that substance by Avogadro's number as follows:
- no. of atoms = no. of moles × 6.02 × 10²³ mol-¹
- The number of moles in 7.10g of Cl is calculated as follows:
no. of moles = mass ÷ molar mass
no. of moles = 7.10g ÷ 35.5g/mol
no. of moles = 0.2mol
no of atoms = 0.2mol × 6.02 × 10²³
no. of atoms = 1.204 × 10²³atoms.
- Therefore, the total number of atoms in 7.10g of chlorine is 1.204 × 10²³atoms.
Learn more: brainly.com/question/15488332?referrer=searchResults