Answer:
The final temperature will be close to 20°C
Explanation:
First of all, the resulting temperature of the mix can't be higher than the hot substance's (80°C) or lower than the cold one's (20°C). So options d) and e) are imposible.
Now, due to the high heat capacity of water (4,1813 J/mol*K) it can absorb a huge amount of heat without having a great increment in its temperature. On the other hand, copper have a small heat capacity (0,385 J/mol*K)in comparison.
In conclusion, the copper will release its heat decreasing importantly its temperature and the water will absorb that heat resulting in a small increment of temperature. So the final temperature will be close to 20°C
<u>This analysis can be done because we have equal masses of both substances. </u>
Gamma rays have the highest penetrating power so it can only be stopped by thick layers of dense metal. :)
THE MOLECULE HAS A C=C AND AN -OH GROUP, SO IT IS CALLED AN ENE/OL, I.E., AN ENOL. ENOLS CAN BE FORMED ONLY FROM CARBONYL COMPOUNDS WHICH HAVE ALPHA HYDROGENS. THEY CAN BE FORMED BY ACID OR BASE CATALYSIS, AND ONCE FORMED ARE HIGHLY REACTIVE TOWARD ELECTROPHILES, LIKE BROMINE.